LIMITS
Informal Definition of a Limit : The behavior of $f(x)$ as x approaches a value
c, from left and right.
$\lim_{x \to c} f(x) = L$

Formal Definition of a Limit: Let f be defined on an open interval containing \emph{c} (except possibly at \emph{c}), and let \emph{L} be a real number. The statement

$$\lim f(x) = L$$

means that for every $\varepsilon > 0$, there exists a $\delta > 0$, such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

Properties of Limits:

$$\begin{split} & \lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x) \\ & \lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \\ & \lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \\ & \lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \frac{f(x)}{g(x)}, \lim_{x \to a} g(x) \neq 0 \\ & \lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n \end{split}$$

Limit Evaluations at Infinity for Rational Functions:

 $R(x) = \frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomials.

- 1. If degree of p(x) < degree of q(x), then $\lim_{x \to -\pm \infty} \frac{p(x)}{q(x)} = 0$.
- If degree of p(x) = degree of q(x), then $\lim_{x \to -+\infty} \frac{p(x)}{q(x)}$ = ratio of the leading coefficient.
- If degree of p(x) > degree of q(x), then $\lim_{x \to + \pm \infty} \frac{p(x)}{q(x)} = \infty$ or $-\infty$, depending on the sign of the leading coefficient.

Continuity at a point: A function f(x) is continuous at a point if $\lim_{x\to c} f(x)$ exists, f(c) is define and $\lim_{x \to c} f(x) = f(c)$.

Derivative definition:

berivative definition.
$$\frac{d}{dx}(f(x)) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \text{slope of the tangent line}$$

DERIVATIVES Basic Properties:

$$\frac{\left(c \cdot f(x)\right)' = c \cdot f'(x)}{\left(f(x) \pm g(x)\right)' = f'(x) \pm g'(x)}$$

$$\frac{d}{dx}(constant) = 0$$

Power Rule:

$$\frac{d}{dx}(x^n) = n \cdot x^{n-1}$$

Product Rule:

$$(f(x)\cdot g(x))' = f'(x)g(x) + f(x)g'(x)$$

Quotient Rule:

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

Chain Rule:

$$\frac{d}{dx}\Big(f\big(g(x)\big)\Big) = f'(g(x))\cdot g'(x)$$

Common Derivatives:

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

Definite Integral Definition:

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) \, \Delta x$$
, where $\Delta x = \frac{b-a}{n}$ and $x_k = a + k \Delta x$

Fundamental Theorem of Calculus:

$$\int_a^b f(x)dx = F(a) - F(b) \text{ where } f \text{ is continuous on } [a,b] \text{ and } F' = f.$$

Integration Properties:

$$\int_a^b cf(x)dx = c \int_a^b f(x)dx$$

$$\int_a^b f(x) \pm g(x) dx = \int_a^b f(x)dx \pm \int_a^b g(x)dx$$

$$\int_a^a f(x)dx = 0 \text{ and } \int_a^b f(x)dx = -\int_b^a f(x)dx$$

$$\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$$

Power rule for Integration:
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C \text{ , } n \neq -1$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int \sec x \, dx = \sec x \tan x + C$$

$$\int \csc x \cot x \, dx = -\csc x + C$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

Integration by Substitution:

$$\int_a^b f(g(x))dx = \int_{g(a)}^{g(b)} f(u)du, \text{ where } u = g(x) \text{ and } du = g'(x)dx$$

LIMITS

Informal Definition of a Limit: The behavior of f(x) as x approaches a value c, from left and right.

$$\lim_{x \to c} f(x) = L$$

Formal Definition of a Limit: Let f be defined on an open interval containing \emph{c} (except possibly at \emph{c}), and let \emph{L} be a real number. The statement

$$\lim_{x \to c} f(x) = L$$

means that for every $\varepsilon > 0$, there exists a $\delta > 0$, such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

Properties of Limits:

$$\begin{aligned} & \lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x) \\ & \lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \\ & \lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \\ & \lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \frac{f(x)}{g(x)}, \lim_{x \to a} g(x) \neq 0 \\ & \lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n \end{aligned}$$

Limit Evaluations at Infinity for Rational Functions:

 $R(x) = \frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomials.

- 1. If degree of p(x) < degree of q(x), then $\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = 0$.

 2. If degree of p(x) = degree of q(x), then $\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = \text{ratio of }$
- If degree of p(x) > degree of q(x), then $\lim_{x \to -\pm \infty} \frac{p(x)}{q(x)} = \infty$ or $-\infty$, depending on the sign of the leading coefficient.

Continuity at a point: A function f(x) is continuous at a point if $\lim_{x \to a} f(x)$ exists, f(c) is define and $\lim_{x \to c} f(x) = f(c)$.

$$\frac{d}{dx}(f(x)) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \text{slope of the tangent line}$$

Basic Properties:

$$\frac{\left(c \cdot f(x)\right)' = c \cdot f'(x)}{\left(f(x) \pm g(x)\right)' = f'(x) \pm g'(x)}$$

$$\frac{d}{dx}(constant) = 0$$

DERIVATIVES

$$\frac{d}{dx}(x^n) = n \cdot x^{n-1}$$

Product Rule:

$$(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$$

Quotient Rule:
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

$$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$$

Common Derivatives:

Common Derivatives:
$$\frac{d}{dx}(\sin x) = \cos x$$
$$\frac{d}{dx}(\cos x) = -\sin x$$
$$\frac{d}{dx}(\tan x) = \sec^2 x$$
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
$$\frac{d}{dx}(\cot x) = e^x$$
$$\frac{d}{dx}(\ln |x|) = \frac{1}{x}$$

INTEGRALS Definite Integral Definition:

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) \, \Delta x, \text{ where } \Delta x = \frac{b-a}{n} \text{ and } x_k = a + k \Delta x$$

Fundamental Theorem of Calculus:

$$\int_a^b f(x)dx = F(a) - F(b) \text{ where } f \text{ is continuous on } [a,b] \text{ and } F' = f.$$

Integration Properties:

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

$$\int_{a}^{a} f(x)dx = 0 \text{ and } \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Power rule for Integration:
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C \text{ , } n \neq -1$$

Common Integrals:

$$\int \cos x \, dx = \sin x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int \sec x \, dx = \sec x \tan x + C$$

$$\int \csc x \cot x \, dx = -\csc x + C$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

Integration by Substitution:
$$\int_a^b f\big(g(x)\big)dx = \int_{g(a)}^{g(b)} f(u)du, \text{ where } u=g(x) \text{ and } du=g'(x)dx$$