Additive Identity	$a+0=a$
Additive Inverse	$a+(-a)=0$
Commutative of Addition	$a+b=b+a$
Associative of Multiplication	$(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Distributive Law	$a(b+c)=a b+a c$
Definition of Division	$\frac{a}{b}=a \cdot \frac{1}{b}$

Associative of Addition	$(a+b)+c=a+(b+c)$
Definition of Subtraction	$a-b=a+(-b)$
Multiplicative Identity	$a \cdot 1=a$
Multiplicative Inverse	$a \cdot \frac{1}{a}=1, a \neq 0$
Multiplication Times 0	$a \cdot 0=0$
Commutative of Multiplication	$a \cdot b=b \cdot a$

Additive Identity	$a+0=a$
Additive Inverse	$a+(-a)=0$
Commutative of Addition	$a+b=b+a$
Associative of Multiplication	$(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Distributive Law	$a(b+c)=a b+a c$
Definition of Division	$\frac{a}{b}=a \cdot \frac{1}{b}$

Associative of Addition	$(a+b)+c=a+(b+c)$
Definition of Subtraction	$a-b=a+(-b)$
Multiplicative Identity	$a \cdot 1=a$
Multiplicative Inverse	$a \cdot \frac{1}{a}=1, a \neq 0$
Multiplication Times 0	$a \cdot 0=0$
Commutative of Multiplication	$a \cdot b=b \cdot a$

