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In this paper, we present some new upper and lower bounds on the 

total domination number of a graph that originated as conjectures 

of Graffiti.pc. 
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Introduction and Key Definitions 

We limit our discussion to graphs that are simple and finite of order 8. Although 

we often identify a graph K with its set of vertices, in cases where we need to be 

explicit we write Z ÐK . A set Q of vertices of K is said to dominate K 
provided each vertex of K is either in Q or adjacent to a vertex of Q . The 

domination number of K is the minimum order of a dominating set. A 

dominating set Q of K is said to totally dominate K provided each vertex of K 
is adjacent to a vertex of Q . The total domination number of K is the minimum 

order of a totally dominating set. The total domination number is denoted by 

#> œ #>ÐK . The minimum order of a connected dominating set is denoted by 

#- œ #-ÐK . Other definitions will be introduced immediately prior to their first 

appearance. 

The total domination number of a graph was first introduced in [3]. This 

invariant remains of interest to researchers as evidenced by numerous recent 

papers. Various upper and lower bounds on total domination have been 

discovered. The domination number has, of course, been well studied ([15], 

[16]). 

Graffiti, a computer program that makes conjectures, was written by S. 

Fajtlowicz and dates from the mid-1980's. Graffiti.pc was written by E. 

DeLaViña in 2001. The operation of Graffiti.pc and its similarities to Graffiti are 

described in [4] and [5]; its conjectures can be found in [6]. A numbered, 

annotated listing of several hundred of Graffiti's conjectures can be found in 

1Work supported in part by NSA grant H98230-06-1-0065. 
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[10]. Both Graffiti and Graffiti.pc have correctly conjectured a number of new 

bounds for several well studied graph invariants; bibliographical information on 

resulting papers can be found in [7]. 

Recently, DeLaViña used Graffiti.pc to generate conjectures involving the 

total domination number. Several of the consequent conjectures either follow 

from known results or have been resolved. A numbered, annotated listing of 

Graffiti.pc's total domination conjectures and their current status can be found in 

[6]. In this paper, we present the proofs of several of these conjectures that are 

new, so far as we can determine, as well as the proofs of some related 

conjectures motivated by Graffiti.pc's conjectures. 

Graffiti.pc employs two main strategies for generating conjectures. The first 

of these is due to Fajtlowicz and is known as the “Dalmatian heuristic” [11]. All 

but two of the Graffiti.pc conjectures cited in this paper are Dalmatian 

conjectures. The other two are Sophie conjectures. The “Sophie heuristic” (due 

to DeLaViña and B. Waller) is the second main strategy Graffiti.pc uses to 

generate conjectures. See [8] for a description of Graffiti.pc's Sophie heuristic. 

Results and Proofs 

The eccentricity of a vertex @ of a connected graph K is the maximum of the 

distances from @ to the other vertices of K. The maximum eccentricity taken 

over all vertices of K is called the diam/ter of K and is denoted by . œ .ÐK . 
The minimum eccentricity taken over all vertices of K is called the radius of K 
and is denoted by < œ <ÐK . The radius of a graph has sometimes been used to 

provide lower bounds for domination-related invariants. One of the first results 

along these lines is the following theorem, which originated as a conjecture of 

the computer program Graffiti [10]. There are several independent proofs of this 

theorem (see [9], [12], [13], [14]). Let � œ �ÐK  denote the independence 

number of K: this is the maximum order of a set of pairwise non-adjacent 

vertices of K. 

Theorem 1: Let K be a connected graph. Then 

� � <. 

A stronger result due to Fajtlowicz [13] uses the radius to provide a lower 

bound for the bipartite number , œ ,ÐK  of a graph K. This is the maximum 

order of an induced bipartite subgraph of K. 

Theorem 2: Let K be a connected graph. Then 

, � #<. 

We now show that the radius can also provide a lower bound for the total 

domination number. This is Graffiti.pc's Conjecture 230 in [6]. 

https://Graffiti.pc
https://Graffiti.pc
https://Graffiti.pc
https://Graffiti.pc
https://Graffiti.pc


          

            

              

               

   

              

              

            

           

   

    

     

   

            

    

            

  

    

             

     

              

     

Theorem 3: Let K be a connected graph with 8 � ". Then 

#> � <. 

The proof of this theorem is presented after the proofs of the following 

lemmas. 

Lemma 1: Let X be a tree with dominating set Q . Then the subgraph induced 

by X � Q has at most 5 � " edges, where 5 is the number of components of the 

subgraph induced by Q . 

Proof. Let /" denote the number of edges with both endpoints in Q , let /# 

denote the number of edges with both endpoints in X � Q , and let /$ denote the 

number of edges with one endpoint in Q and one endpoint in X � Q . 

Proceeding by contradiction, suppose there are 5 or more edges induced by 

X � Q . Namely we assume: 

(1) /# � 5. 

First, since X is a tree, 

(2) 8 � " œ /" ˇ /# ˇ /$. 

Next, since the graph induced by Q is a forest with 5 trees, 

(3) /" œ lQl � 5. 

Moreover, because each of the 8 � lQl vertices of X � Q is dominated by a 

vertex in Q , 

(4) /$ � 8 � lQl. 

Finally, we put inequalities (1) and (4) together with equations (2) and (3) to 

obtain: 

8 � " œ /" ˇ /# ˇ /$ � ÐlQl � 5 ˇ 5 ˇ Ð8 � lQl  œ 8, 

a contradiction. Consequently, /# Ÿ 5 � " as claimed. è 

A spanning tree of a connected graph K is a subgraph that contains all vertices 

of K and is a tree. 



               

                

       

                

          

              

              

 

              

             

               

            

                 

                

 

           

             

             

           

     

          

               

                 

              

              

             

                

              

            

 

Lemma 2: Let K be a connected graph with 8 � ", and let Q be a minimum 

total dominating set of K. Then there exists a spanning tree W of K such that Q 
is a minimum total dominating set of W. 

Proof. If K is a tree, then put W œ K and we are done. Otherwise, let G be a 

cycle in K. We delete an edge from G as follows. 

(i) If G has two consecutive vertices B and C such that B Â Q and C Â Q , then 

delete the edge between them. The set Q is still a total dominating set for the 

resulting graph. 

(ii) Suppose the first case does not apply. If G has two consecutive vertices B 
and C such that B − Q and C Â Q , then delete the edge between them. Since 

the other neighbor of C on G is necessarily in Q (or else the first case applies), 

the set Q is still a total dominating set for the resulting graph. 

(iii) If neither of the first two cases applies, then all of the vertices of G are in 

Q . Delete any edge of G . The set Q is still a total dominating set for the 

resulting graph. 

Repeat this process until all cycles are removed. Call the resulting spanning 

tree W. Since Q is a total dominating set for W, #>ÐW  Ÿ lQl œ #>ÐK . Since the 

total domination number of a graph is at most the total domination number of 

any of its spanning trees, #>ÐK  Ÿ #>ÐW . Thus, #>ÐW  œ lQl and Q is a 

minimum total dominating set of W. è 

Lemma 3: Let K be a connected graph with 8 � ". Then 

. ˇ " 
#> � . 

# 

Proof: Let Q be a minimum total dominating set of K with 5 components. Let W 
be a spanning tree of K, as in Lemma 2, such that Q is also a minimum total 

dominating set of W. Since Q induces a forest with 5 trees, there are #> � 5 
edges induced by Q . By Lemma 1, there are at most 5 � " edges induced by 

W � Q . In traversing a diametric path of W, we can enter and leave each 

component of Q at most once. Thus in a diametric path of W, there are at most 

#5 edges that have an endpoint in Q and an endpoint in W � Q . Noting that 

#5 Ÿ #>, we get the following upper bound on the diameter .ÐW  of W: 

(5) .ÐW  Ÿ Ð#> � 5 ˇ Ð5 � " ˇ #5 œ #> ˇ #5 � " Ÿ ##> � "Þ 



               

       

       

                 

               

             

         

          

          

                  

                

            

   

     

              

      

       

            

              

             

           

           

         

       

              

          

However, since the diameter of a graph is at most the diameter of any of its 

spanning trees, .ÐK  Ÿ .ÐW  and this completes the proof. è 

Now we are prepared to prove Theorem 3. 

Proof of Theorem 3: Let Q be a minimum total dominating set of K. Let W be a 

spanning tree of K, as in Lemma 2, such that Q is also a minimum total 

dominating set of W. Now, by Lemma 3, .ÐW  Ÿ ##> � ". However, since W is a 

tree, #<ÐW  � " Ÿ .ÐW . From these we get the desired inequality since 

<ÐK  Ÿ <ÐW . è 

The Sophie heuristic of Graffiti.pc (see [8] for description) conjectured the 

following interesting (albeit weak) characterization of the case of equality for 

Theorem 3 (numbers 277 and 278 in [6]). Let H be a subset of the vertex set of a 

graph K. Then IKÐH  is the set of edges of the subgraph of K induced by H. 

Theorem 4: Let K be a connected graph with 8 � " and minimum total 

dominating set Q . Then 

" 
#> œ < if and only if lIKÐQ l œ <. 

# 

Proof. Suppose #> œ <. Let Q be a minimum total dominating set of K with 5 
components. From inequality (5) of Lemma 3, 

#< � " Ÿ #> ˇ #5 � " Ÿ ##> � ", 

which together with our assumption that #> œ < implies 

(6) < œ #5 œ #>Þ 

On the one hand, since Q is a total dominating set, each component of the 

subgraph induced by Q contains at least two vertices and at least one edge, 

which implies that 5 Ÿ lIKÐQ l. On the other hand, no component of the 

subgraph induced by Q contains more than one edge, otherwise the component 

contains at least three vertices, which contradicts that #5 œ #>. Thus, 
" 5 œ lIKÐQ l, and from (6) it follows that lIKÐQ l œ <.# 

Suppose 

" 
lIKÐQ l œ <. 

# 

Since each vertex of Q has degree at least one in the subgraph induced by 

Q , � ./1QÐ@  � #>. Moreover, for the subgraph induced by Q we have 
@−Q 

https://Graffiti.pc


       

        

               

              

              

            

              

           

     

          

                

              

         

            

              

        

             

          

      

           

        

         

                

               

 

         

           

             

#lIKÐQ l œ � ./1QÐ@ . Now combining the latter two relations, our 
@−Q 

assumption for this case, and Theorem 3, we get: 

< œ #lIKÐQ l œ �./1QÐ@  � #> � <. è 
@−Q 

The center of a graph K, denoted by GÐK , is the set of all vertices of 

minimum eccentricity <. The distance from a vertex @ to a set is the smallest 

distance from @ to any of the vertices in the set. The eccentricity of the center, 

denoted by eccÐGÐK  , is the maximum distance from the center to vertices not 

in the center. By eccÐGÐW   we mean the eccentricity (with respect to W) of the 

center of the subgraph W of K. When eccÐGÐK   œ <ÐK , the following theorem 

provides an improvement on Theorem 3. 

Theorem 5: Let K be a connected graph with 8 � ". Then 

#> � " ˇ eccÐGÐK  . 

Proof. Let Q be a minimum total dominating set of K and let W be the spanning 

tree formed, as in Lemma 2, such that Q is also a minimum total dominating set 

of W. Since W is a tree, #<ÐW  � " œ .ÐW  or #<ÐW  œ .ÐW . 
Suppose that #<ÐW  � " œ .ÐW . In this case, any diametric path in W is an 

even path and W has a bi-center (the center is a pair of adjacent vertices). 

Consequently, eccÐGÐW   œ <ÐW  � ". Thus, using inequality (5) of Lemma 3, 

.ÐW ˇ " Ð##> � "  ˇ " 
" ˇ eccÐGÐW   œ <ÐW  œ Ÿ œ #>. 

# # 

On the other hand, suppose #<ÐW  œ .ÐW . Now, any diametric path in W is an 

odd path, W has a unique center vertex, and consequently eccÐGÐW   œ <ÐW . 
Thus, using inequality (5) of Lemma 3, 

.ÐW  ##> � " " 
" ˇ eccÐGÐW   œ " ˇ <ÐW  œ " ˇ Ÿ œ #> ˇ . 

# # # 

This implies that " ˇ eccÐGÐW   Ÿ #> since the left hand side of the above 

inequality is an integer. So in either case, " ˇ eccÐGÐW   Ÿ #>. 
We need now only show that the inequality, eccÐGÐK   Ÿ eccÐGÐW  , is 

valid. That is, that the eccentricity of the center of a graph is at most the 

eccentricity of the center of a spanning tree of the graph. To do this consider the 

following inequality, 

eccÐGÐK   Ÿ <ÐK  Ÿ <ÐW  Ÿ eccÐGÐW   ˇ ". 

Suppose that eccÐG ÐK   œ eccÐG ÐW   ˇ "Þ This implies that all of the above 

are equal. In particular, since eccÐG ÐW  ˇ " œ <ÐW , W is a bi-centric tree. Let 

ÖBß C× be the bi-center of W. Moreover, let .KÐ:ß ;  denote the distance from : 

mailto:�./1Q�@�


          

                

                 

       

        

              

         

   

              

                 

          

             

  

          

           

               

               

            

              

                

               

             

      

            

           

to ; in K. Since for any vertex A in K, 

.KÐBß A  Ÿ .WÐBß A  Ÿ <ÐW  œ <ÐK , 

we conclude that B is also center of K. Similarly, C is also a center of K. 

Let D be a vertex at eccentric distance from GÐK  in K. Note that for any @ in 

GÐK , 

.KÐ@ß D  � eccÐGÐK   œ eccÐGÐW   ˇ ". 

Now because B is a center of K, 

<ÐK  œ <ÐW  � .WÐBß D  � .KÐBß D  � eccÐGÐK   œ <ÐK , 

and we conclude that .WÐBß D  œ <ÐW . Similarly, .WÐCß D  œ <ÐW . However, 

this situation is impossible because only one of these equations can be true for a 

bi-centric tree. Hence, it must be the case that eccÐGÐK   - eccÐGÐW   ˇ ", 

which proves our claim. è 

The girth 1 œ 1ÐK  is the minimum order of an induced cycle in a graph K 
containing a cycle. It is easy to show that the girth of a graph can be used to 

provide a lower bound for the total domination number (Graffiti.pc's Conjecture 

249 in Ò6Ó). Occasionally this lower bound may be slightly better than that given 

by the radius. 

Proposition 1: Let G be a graph containing a cycle. Then 

1 
#> � . 

# 

Proof. We can dismiss the case 1 Ÿ % handily, since #> � #. Thus suppose 

1 � %. Let Q be a minimum total dominating set. Let G be a cycle of minimum 
1 

order and let O be the intersection of Q and G . We can assume that lOl - ,
# 

since otherwise the inequality is trivial. Since each vertex of O totally dominates 

two vertices of G , at most #lOl vertices of G are totally dominated by vertices 

from O . Each vertex of G not totally dominated by a vertex in O must be totally 

dominated by a distinct vertex of Q outside of G , since two or more of these 

vertices could not have been totally dominated by the same vertex of Q � O or 

a shorter cycle is present. This yields: 

1 
#> � lOl ˇ 1 � #lOl œ 1 � lOl � . è 

# 

The characterization of the case of equality for Proposition 1 can easily be 

derived from its proof. For 1 Ÿ %, this characterization is similar to the 



            

              

                

       

               

            

             

          

           

              

            

          

             

             

            

               

             

                  

              

       

          

               

      

    

                 

              

          

            

             

1 
characterization of graphs where #> œ #: #> œ if and only if there exists and 

# 
edge ÖBß C× such that 1) RÐB  and RÐC  are both independent sets; 2) RÐB  and 

RÐC  are disjoint and their union is K; and 3) at least one vertex of RÐB  is 

adjacent to at least one vertex of RÐC . 
1 

On the other hand, for 1 � &, #> œ if and only if 1 ´ ! mod % and there 
# 

exists an induced cycle of order 1 whose edges can be labeled clockwise 

"ß #ß …ß 1 such that all non-cycle vertices have degree " and are incident to cycle 

edges that have labels from the same congruence class mod %. 

We let P œ PÐK  denote the maximum number of leaves (vertices of degree 

") over all spanning trees of K and 6 œ 6ÐK  denote the minimum number of 

leaves over all spanning trees of K. Graffiti.pc's Conjecture 297 in [6] asserts 
" 

that #> ˇ #- Ÿ 8. A simple known fact is that the connected domination 
# 

number and P are related by #- œ 8 � P, and thus 297 is equivalent to the 

statement that the total domination number is bounded above by the average of 8 
and P. The authors found two independent proofs of this conjecture. Below, we 

observe that this conjecture is also a corollary to a result of M. Chellali and T. 

Haynes found in [1], which we state next along with another of their results 

found in [2]. In a tree, a vertex adjacent to a leaf of the tree is called a support 

vertex. 

Theorem 6 (M. Chellali and T. Haynes [1]ß [2]): Let X be a tree with 8 � # 
vertices, l leaves, and s support vertices. Then 

8 ˇ # � 6 8 ˇ = 
Ÿ #> Ÿ . 

# # 

Corollary 1: Let G be a connected graph with 8 � ". Then 

8 ˇ 6 
#> Ÿ . 

# 

Proof. The case 8 œ # is obvious. Otherwise, let X be a spanning tree of K with 

6 leaves and = support vertices. Then 

8 ˇ = 8 ˇ 6 
#> ÐK  Ÿ #> ÐX  Ÿ Ÿ . è 

# # 

A subset of the edges of a graph K such that no two edges are incident is a 

matching in K. A maximal matching is a matching that is not contained in a 

larger matching; let .* œ .*ÐK  denote the cardinality of a minimum maximal 

matching. The number of edges in a maximum matching is the matching number, 

which is denoted by . œ .ÐK . A graph is claw-free if it contains no induced 



             

             

           

              

              

              

          

              

               

            

           

            

             

  

           

           

             

              

            

             

        

               

                

          

             

                 

            

                 

             

               

            

            

           

                

               

                   

- -

O"ß$ (the complete bipartite graph with partitions of size one and three). It is 

known that whenever a graph is claw-free and of minimum degree at least three, 

the total domination number is bounded above by the matching number (see 

[17]). 

A collection of vertex disjoint paths of a graph K that partition the vertices of 

K is a path covering of K. The cardinality of a minimum path covering is 

denoted by 3=3ÐK . Note that 3 œ " if and only if the graph has a Hamiltonian 

path. Graffiti.pc conjectured an upper bound on #>ÐK  involving the matching 

and path covering numbers of a K (number 288 in [6]), which we prove in the 

next theorem. Let G7, O7 and T7 be the cycle, complete graph and path on 7 
vertices, respectively. Moreover, note that the bound is sharp for every value of 

3, as demonstrated by taking G7 with 7 � ", using the assumption that 

G" œ O" and G# œ T#, and identifying each vertex of the cycle with the center 

of a copy of T(. Let the constructed graph be called K7, then #>ÐK7  œ %7, 

.ÐK7  œ $7, and 3ÐK7  œ 7Þ 

Theorem 7: Let G be a connected graph with 8 � ". Then 

#> Ÿ . ˇ 3. 

Proof. Let c œ ÖT"ß T#ß ÞÞÞß T3× be a minimum path covering of K with T3 

having 83 vertices. Starting from one end, let Q3 be the matching consisting of 
8Ð3  

the edges in odd position along T3, so that lQ l3 œ ¨ ©. For each 3 such that # 
8 � ", we construct a total dominating set H for T such that lH l Ÿ lQ l ˇ ".3 3 3 3 3 

If 83 � " for " Ÿ 3 Ÿ 3, then this completes the proof, since it yields a total 

dominating set for K with size at most . ˇ 3. 

In general, to form H3 we take the edges of Q3 in pairs from the beginning, 

putting into H3 the two central vertices in this set of four vertices along T3. If 
8Ð3  83 ´ ! mod %, this works very simply, with lH l3 œ lQ l3 œ # . In other 

congruence classes, we must be careful to dominate the vertices at the end, after 

the last group of four vertices. If 83 ´ " mod %, then it suffices to add the next-

to-last vertex on T3 to H3, yielding lH l3 œ lQ l ˇ3 ". This works because the 

vertex before it is also in H3. If 83 ´ # mod %, then we instead add the last two 

vertices. They comprise the last edge of Q3, so again lH l3 œ lQ l ˇ3 ". If 

83 ´ # mod %, those two vertices we just added also take care of the last vertex. 

As remarked earlier, the proof is now complete unless some paths in the 

partition are isolated vertices; we index the paths so that these are T5ˇ"ß ÞÞÞß T3. 
5 5 

Let H œ H3 and Q œ Q3, we have lHl Ÿ lQl ˇ 5. Consider T4 with 
3œ" 3œ" 

4 � 5; let @ be the one vertex of T4. Since K is connected and we have a 

minimum path covering, @ has a neighbor B on some path T3 with 3 - 5. Since 

H3 is a total dominating set for T3, we can add B to H3 (if it is not already there) 

https://Graffiti.pc


              

         

           

            

              

    

           

            

             

      

            

               

              

            

          

           

   

         

            

            

           

             

             

              

               

             

                

                   

             

             

               

                  

               

               

      

                  

               

                    

                   

to dominate @. After doing this for each 4 with 5 - 4 - 3, we have constructed a 

total dominating set of K with size at most . ˇ 3. è 

Graffiti.pc's Conjecture #%( asserts that #> � #3 when K is a regular graph. 

The desired inequality does not hold for all graphs. In particular, consider O7ß8. 

If l7 � 8l � ", then at least two paths are needed to cover the vertices, but the 

total domination number is two. 

On the other hand, the inequality is trivial for 5-regular graphs with 

5 − Ö"ß #×. Each component takes one path to cover and contributes at least two 

vertices to a total dominating set. Equality holds when 5 œ " or when 5 œ # and 

all components are either G$ or G%. 

We prove the inequality for cubic graphs. We will use a given total 

dominating set W to construct a path partition of Z ÐK  such that each vertex of W 
is associated with one path, and on average at least two vertices of W are 

associated with each path. Note that the bound is sharp infinitely often, in 

particular whenever each component is isomorphic to O$ß$ or O$ñO# (the 

cartesian product of O$ and O#); moreover, we conjecture that equality holds 

only in this case. 

Theorem 8: Let K be a connected $-regular graph. Then 

#> � #3. 

Proof: Let W be a total dominating set (td-set for convenience), and let 

L œ K � W. Since each vertex outside W has a neighbor in W, we have 

 ÐL  Ÿ #. Hence each component of L is a path or a cycle. 

We construct a path partition, in two phases. In the first phase, we construct 

pairwise disjoint paths that together include all of Z ÐL  and some vertices of W. 

The paths have vertices of W at both ends, and no two consecutive vertices along 

one of these paths belong to W. Each step of Phase 1 absorbs one component of 

L , producing a family of paths with these properties. Let c be the current 
wfamily. Let W be the set of vertices of W that appear on the paths in c. 

Case 1 of Phase 1: a component of L that is a path T . Let B and C be the 

endpoints of T (possibly B œ C). Each endpoint of T has at least two neighbors 

in W (three if T is an isolated vertex of L). Choose ? − RÐB A W and 

@ − RÐC A W with ? Á @. This can be done easily if B œ C. Note that if ? is an 

endpoint of a path in T , then ? cannot be adjacent to both B and C, since W is a 

td-set; similarly for @. Indeed, the only case where both neighbors of B in W can 

also be neighbors of C is when those vertices are not yet in Ww; we simply let one 

be ? and the other be @. 
wVertices ? and @ may or may not lie in W . Since W is a td-set, neither ? nor @ 

can be an internal vertex of a path in c, since such vertices have two neighbors 

already outside W. Thus each of ? and @ is an endpoint of a path in c or is as yet 
w wunused in W . If ? and @ are endpoints of the same path T in c, then B is not 



                 

      

                

               

              

      

                  

               

                

             

                

  

                   

                  

               

               

                    

                 

              

                

   

               

                

               

               

                

  

            

                  

               

    

                 

              

              

                

            

             

        

            

                

              

            

              

            

adjacent to @, since W is a td-set. Hence B has a neighbor outside Ö?ß @× in W, and 

we use that vertex instead of ?. 

Hence ? and @ are not endpoints of the same path in c. Combine T with the 

edges ?B and C@ and the paths in c (if they exist) that are already associated 

with ? and/or @ to form a single path that has the desired properties (replacing 

the paths used that were in c). 

Case 2 of Phase 1: a component of L that is a cycle G . Each vertex B on G 
has exactly one neighbor in W, since W is a dominating set and B has two 

neighbors already on G . No vertex of W has three neighbors on G , since W is a 

td-set. Since G has at least three vertices, we can therefore find two consecutive 

vertices on G (call them B and C) whose neighbors in W (call them ? and @, 

respectively) are distinct. 

As in Case 1, neither ? nor @ is an internal vertex of a path in c. If we can 

choose B and C above so that ? and @ are distinct and are not the endpoints of a 

single path in c, then we can absorb the path G � BC as described in Case 1. 

On the other hand, if these neighbors ? and @ are endpoints of the same path 
w w wT in T , then let B be the neighbor of C on G other than B, and let ? be the 

wneighbor of B in W. Since @ already has two neighbors not in W (both C and the 
w wneighbor of @ on T ), we cannot have ? œ @, since W is a td-set. Similarly 

w w w? Á ?. Now ? is not an endpoint of T , and we can absorb the path G � CB as 

described in Case 1. 
wPhase 2: All of L has been absorbed. Recall that W denotes the subset of W 

that has been used on the paths in c. These paths each have at least two vertices 
wof W and cover all of Z ÐK  except W � Ww . Let Q be a maximum matching in 

wthe subgraph of K induced by W � W . Each edge of Q is a path with two 

vertices of W; we add this path to our family c. It remains only to absorb the 

vertices of W � Ww � Z ÐQ . 
wLet X œ W � W � Z ÐQ . By the choice of Q , the set X is independent in 

K. Since W is a td-set, each vertex A in X has at least one neighbor in W. Choose 

one such neighbor arbitrarily; it lies on a path in c. We absorb these vertices of 

X into our path partition. 

Let T be a path in c. The chosen edges joining T to vertices of X form a 

caterpillar with T . Each internal vertex of T in Ww can have one such neighbor; 

the endpoints of T can have two. If an endpoint acquires two new neighbors, we 

use one to extend T , and the other becomes a path of length !. This does not 

cause a problem, because we have increased the number of components of the 

path partition by 1 while absorbing two additional vertices of X . If the endpoint 

has one new neighbor, we just extend the path. 

It remains to consider internal vertices of the original path that are selected 

from X ; each such vertex is selected at most once. If 4 internal vertices of T are 

selected, then we have #4 "extra" vertices of W associated with T (in addition to 

the endpoints and the vertices possibly appended to the endpoints), so we can 

afford to cut the path 4 times (just before each internal vertex receiving a new 

neighbor), creating 4 additional paths in the path partition but having the total 



              

  

          

              

            

            

     

          

                  

             

             

              

                 

             

           

   

     

             

               

          

              

             

              

         

           

            

        

number of vertices of W associated with these paths be at least twice the number 

of paths. è 

The following theorem was inspired by Graffiti.pc's Conjecture 246, that the 

total domination number in trees is at least one less the matching number. It is 

not too difficult to see that this conjecture is false, however, the following 

theorem shows that the total domination number and the minimum size of a 

maximal matching (denoted .*) are related. 

Theorem 9 : Let X be a tree with 8 � ". Then 

#> � .* ˇ ". 

Proof. Let X be a tree, and let H be a minimum total dominating set of X with #> 
vertices and 5 components. We will build a maximal matching Q with at most 

#> � " edges. To start, take a maximal matching from the forest induced by H 
and call this set Q". Next, take a maximal matching from the forest induced by 

X � H and call this set Q#. Finally, for each vertex of H not in Q", it may be 

possible to match that vertex to a currently un-matched vertex of X � H. Let Q$ 

be the set of all such possible edges and set Q œ Q" C Q# C Q$. By this 

construction, Q is maximal. 

Now, from Lemma 1 we see, 

lQ#l Ÿ 5 � ". 

In addition, we can bound the number of edges in Q$ with the inequality, 

lQ$l Ÿ #> � #lQ"l. 

Therefore, 

.* Ÿ lQl œ lQ"l ˇ lQ#l ˇ lQ$l Ÿ lQ"l ˇ 5 � " ˇ #> � #lQ"l 
œ #> � " � ÐlQ"l � 5 . 

From this we get the desired inequality .* Ÿ #> � ", since lQ"l � 5. è 

An assignment of 5 colors to the vertices of a graph K such that adjacent 

vertices are assigned different colors is a 5-coloring of K. The minimum 5 for 

which a graph has a 5-coloring is called the chromatic number and is denoted by 

; œ ;ÐK . Complete graphs and trees demonstrate that the total domination 

number is not bounded below or above by the chromatic number. Graffiti.pc's 

Conjecture 228 in [6] states that when K is triangle-free, the total domination 

number is indeed bounded below by the chromatic number. 
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Proposition 2: Let G be a triangle-free graph with 8 � ". Then 

#> � ; . 

Proof. Let W be a smallest total dominating set. It suffices to cover Z with lWl 
independent sets. Since K is triangle-free, the neighborhood of each vertex of W 
is an independent set. Since W is a total dominating set, the union of these 

neighborhoods is Z . è 

The local independence at a vertex @ of a graph K is the independence 

number of the subgraph induced by the neighbors of @. We use - œ -ÐK  as the 

maximum of local independence over all vertices of K. Note that -ÐK  œ # if 
and only if K is claw-free and is not a complete graph. The order of a largest 

complete subgraph is known as the clique number and denoted by = œ =ÐK . 
The clique number of a graph does not bound the total domination number above 

as seen by the following construction. Take O7 for 7 � $ and add a pendant 

edge at each, then add a pendant edge at one of the resulting vertices of degree ". 

The resulting graph has total domination number 7 ˇ " while the clique number 

is 7. This family of graphs also demonstrates that the bound in the next theorem 

(Graffiti.pc number 301), involving the clique number of the graph and the 

maximum of local independence of the complement graph, is sharp. 

Theorem 10: Let G be a connected graph with 8 � ". Let 
-E œ Ö@ À local independence of @ in K is maximum×. Then 

#> Ÿ = ˇ lEl. 

Proof. We can assume that K is not complete, since the relation holds otherwise. 

Let @ be a vertex of maximum local independence in K-. 

Observation. A vertex @ of maximum local independence -ÐK   in K has the 
-property that in K there exists a clique of order -ÐK   whose vertices are not 

adjacent to @. 

-By the above observation, there exists a clique O of order -ÐK   in K such 

that no vertex of O is adjacent to @ in K. Clearly Z ÐO  is a total dominating set 

for the subgraph induced by RÐO . By assumption, @ is in Z ÐK  � RÐO . 
-Since each vertex in Z ÐK  � RÐO  has local independence at least -ÐK   in 

K , each is a vertex of maximum local independence in K , that is, 

lZ ÐK  � RÐO l Ÿ lEl. 

In the case that Z ÐK  � RÐO  is a total dominating set for the subgraph induced 

by Z ÐK  � RÐO , it follows that Z ÐO  C ÒZ ÐK  � RÐO Ó is a total 

dominating set for K, and 

https://Graffiti.pc


             

            

            

            

           

              

      

     

   

         

         

          

              

       

           

  

          

          

         

       

   

         

          

    

          

    

            

     

#> Ÿ lZ ÐO l ˇ lZ ÐK � RÐO l Ÿ = ˇ lEl. 

On the other hand, in case Z ÐK  � RÐO  is not a total dominating set for 

the subgraph induced by Z ÐK  � RÐO , there must exist an isolated vertex B in 

the subgraph induced by Z ÐK  � RÐO . Since K is assumed to be connected, B 
must be adjacent to some vertex 8 in RÐO  � Z ÐO . Now let B"ß B#ß ÞÞÞß B5 be 

the isolated vertices in the subgraph induced by Z ÐK  � RÐO . For each vertex 

B4, let 84 be a neighbor of B4 in RÐO  with respect to K. Then 

[Z ÐK  � RÐO ] � ÖB"ß B#ß ÞÞÞB5× C Ö8"ß 8#ß ÞÞÞß 85× is a total dominating set for 

the subgraph induced by Z ÐK  � RÐO . Finally, 

Z ÐO  C ÒÒZ ÐK  � RÐO Ó � ÖB"ß B#ß ÞÞÞB5× C Ö8"ß 8#ß ÞÞÞß 85×Ó is a total 

dominating set for K of order at most = ˇ lEl. è 
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