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Abstract—In this work, we consider the problem of
maximizing the reliability of connections in mesh networks
against failure scenarios in which multiple links may fail
simultaneously. We consider the single-path connection problem
as well as multiple-path (protected) connection problems. The
problems are formulated as minimum-color path problems,
where each link is associated with one or more colors, and each
color corresponds to a given failure event. Thus, when a certain
color fails, all links which include that color will fail. In a single-
path problem, by minimizing the number of colots on the path,
the failure probability of the path can be minimized if all colors
have the same prebability of causing failures. In the case of two
paths, where one path is a protection path, if all colors have the
same prebability of causing failures, the problem becomes that
of finding two link-disjeint paths which either have a minimum
total number of colors, or which have a minimum number of
overlapping colors. By minimizing the total number of colors,
the probability that a failure will occur on either of the paths is
minimized. On the other hand, by minimizing the number of
overlapping celors, the probability that a single failure event will
cause both paths to fail simultaneously is minimized. The
problems are proved to be NP-complete, and ILP formulations
are developed. Heuristic algorithms are proposed for larger
instances of the problems, and the heuristics are evaluated
through simulation.

Index terms— System design, Simulations, Mathematical
programming/optimization, Graph theory, Minimum-Coler path,
path protection, risk, shared risk link group, link disjoint, node
disjoint, risk disjoint, integer linear program (ILP)

L ENTRODUCTION

In path-routed networks, end users communicate with each
other via end-to-end paths such as the label switched paths in
MPLS networks j1][2] and lightpaths in all-optical WDM
networks [3][4]. In such networks, it is tmportant to provide a
high degree of reliability or survivability for each connection.

One method for providing survivability is through path
protection schemes, in which a link-disjoint backup path is
precompuied for every working path [5]{6](7]. Such
protection schemes provide 100% reliability against any
single-link failure in the network, However, in many cases, a
single failure event may result in the failure of multiple links
in the network. For example, in an optical WDM networlk,
multiple fiber links may be bundled into the same
underground conduit or span. Even though these fiber links
arc disjoint in the network layer, a cut to the underground
conduit can cause all fiber links in the conduit to fail. Such
fibers that share a common risk factor are said to belong to the
same Shared Risk Link Group (SRLG}) [8][9].
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One approach to address the problem of SRLG protection
is to find a risk-disjoint path for every working path [10]. Two
paths that are risk disjoint do not share any links which will
fail simultaneously due to a single failure event or risk factor.
In this case, the network can provide 100% reliability against
any single failure event in the network, even if such an event
causes multiple links to fail simultaneously.

A drawback of SRLG protection schemes is that, if there
arc many risk factors in the network, and if risk factors
include many links, then it may be difficult, or even
impossible. to find two risk-disjoint paths for every
comnection {11]. Thus, it may be difficult to provide 100%
reliability against certain multiple-link failure events. For
cases in which 100% reliability is not possible, the objective
should be to find one or more paths for each connection, such
that the reliability for each connection is maximized. In this
work, we are concerned with maximizing the reliability of
connections against failure events in which multiple links may
fail simultancously. Equivalently, the problem is to find one
or more paths for each connection such that the failure
probability of the connection is minimized.

In this work, we consider the single-path problem as well
as multiple-path problems. The problems are formulated as
minimum-color path problems, where each link is associated
with one or more colors, and each color corresponds to a
given failure ¢vent. Thus, when a centain color fails, all links
which include that color will fail. In a single-path problem,
by minimizing the mimber of colors on the path, the failire
probability of the path can be minimized if all risk factors
have the same probability of causing failures. In the case of
two-paths, where one path is a protection path, if all risk
factors have the same probability of causing failures, the
problem becomes that of finding two link-disjoint paths which
cither have a minimum total number of colors, or which have
a minimum number of ovetlapping colors. By minimizing the
total number of colors, the probability that a fatlure will occur
on either of the paths is minimized. On the other hand, by
minimizing the number of overlapping colors, the probability
that a single failure event will cause both paths to fail
simultaneously is minimized.

Compared to shortest path problems and their applications
[121{13][14]. there has not been much research activity on
minimum-color path problems, despite their significant
practical value, While investigating the blue-red set covering
problem, [15] briefly discussed the minmimum-coler single-
path problem and stated that the problem can be proven NP-
complete by reduction from the blue-red set covering problem.
There was no further discussion on the problem beyond that.



On the other hand, [16] looked into the problem of
establishing a spanning tree using the minimum number of
labels (i.e., colors). 1t proved the problem to be NP-complete,
then proposed two heuristic algorithms. The first heuristic is
called the Edge Replacement Algorithm. The algorithm first
forms an arbitrary spanning tree, then tries to replace each
edge with a different edge that can reduce the total number of
colors in the tree. The second heuristic is called the Maximum
Vertex Covering Algorithm. This algorithm starts with an
empty spanning tree, then scans through all the colors and
chooses the one that covers the most uncovered vertices. This
procedure is repeated until a spanning tree is formed. [17] and
[18] investigated the second heuristic algorithm in further
detail.

In this paper, we define three minimum-color path
problems. The Minimum-Color Single-Path (MCSiP) problem
is the problem of finding a single path from a source node s to
a destination node  such that it uses the minimum number of
colors. We investigate this problem in much greater depth
than previous researchers. We then investigate the problem of
finding two link-disjoint paths that use the minimum number
of total colors, i.e., the Mimmum Total Color Disjoint-Paths
(MTCDiP) problem. This problem has two variations based
on the disjointniess of the two paths. One variation is the case
where the two paths are to be node-disjoint, while the other is
the case where the two paths are to be link-disjoint. We
consider both varations in this work. The third problem
discussed in this paper is the Minirnum Overlapping Color
Disjoint-Paths (MOCDiP} problem. The objective of this
problem is to find two link-disjoint paths that have the
minimum number of common colors. For all three problems,
we prove they arc NP-complete. We also develop ILP
formulations and heuristics for each of the problems,

In the general case of the minimum-color path problems,
every network link may be of multiple colors. For the three
problems we discuss in this paper, a link of # colors and ¢ cost
is equivalent to » concatenated links, each having only one of
the » colors and //e cost. Therefore, we consider only network
links of a single color in this paper.

In addition to the discussion of the three problems with a
single connectior; we also consider the problems with static
. draffic. in which all connections requests are known, The

#* objective is to find paths with minimum average number of

colors for all of the connection requests.

In addition to network reliability, the minimom-color path
problems also apply to other areas of network management.
~ For instance, a complex network may consist of links that
deploy different transmission mediums, such as WDM,
SONET/SDH [19], Frame Relay [20], and X.25 [21]. It is
quite likely that the shortest paths between two end nodes
traverse links of many different mediums, which are
expensive to provision and maintain. Therefore a network
carricr may prefer different paths that are suboptimal in length
but have the minimum number of transmission mediums. As
another example. a nationwide communication network may
contain nodes and links that belong to different network
carriers. A path is ofien less expensive to establish and
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operate if it involves fewer carriers, even if the length of that
path is not minimal. If we represent the transmission mediums
and the network operators by colors, these two examples can
be treated as minimum-color path problems.

To the best of our knowledge, this is the first time the
MTCDiP problem and MOCDIP problem are defined and
investigated. This is also the first time an ILP formuiation and
heuristics are proposed for the MCSiP problem.

The rest of the paper is organized as follows. Section IL, III,
and IV discuss each of the above three problems, respectively.
In each section, we present a proof for the NP-completeness
of the problem, followed by an ILP formulation and heuristics.
We solve the ILPs and conduct computer simuiations for the
heuristics in Section V, Scction V1 concludes the paper.

I1. THE MINIMUM-COLOR SINGLE-PATH PROBLEM

The MCSIP problem is defined as follows. Given network
G = (N, L), where N is the set of nodes and L is the set of
links, and given the set of colors C = {¢;, ¢, ¢s, ..., cx} where
K 1s the maximum number of colors in G, and given the color
¢; € C for every link / € L, find one path from source node s
to destination node 4 such that it uses the minimum number of
colors.

A Proof of NP-Completeness

We need to reduce a known NP-complete problem to the
MCSiP problem. The known NP-complete problem in this
case is the Minimum Set Covering Problem [22]. This
problem is stated as follows. Given a finite set S = {a,, a; a3
., @y}, and a collection C = {C;, C,..., C,} such that each
clement in C contains a subset of S, is there a  minimum
subset, C’C C such that every member of S belong to at least
one member of 7

We construct a graph G for an arbitrary instance of the
Minimum Set Covering Problem, such that the graph contains
one path from s to d with the minimum number of colors, if
and only if C contains a minimum set cover C . Following are
the steps for the graph construction:

Step 1. For every element a; in S, create a network node a; .

Step 2. For every subset C; to which a, belongs, create a
network link a,.; a; of color ¢; For element a,, the link is sa,.
There is also a single link between a, and d with color cy.

An example is given in Fig 1. In this example, we construct
graph G for a Minimum Set Covering problem S'= {a,, a,, a,,
asy, C={Ch C; C5 Ci. G5}, Cr = {ay, a2}, Co = {as, a3}, C;
={a;. as}, Cy = {as, ai}, Cs = {a;, a;}.

Fig. 1. Reduction of the Minimum Set Covering Problem to the
MCSIP problem



It is quite clear that if there is a minimum-color path from s
to d, then the colors on that path are mapped directly to a
minimum set covering all the elements in S. Conversely, if
there is a mimimum set covering all the elements, then a
minimum-color path can be derived by going through every
node and selecting the link with the color representing the set
that covers the corresponding element.

Under static traffic, the MCSiP problem is defined as
follows. Given network G = (N, L). where N is the set of
nodes and £ is the set of links, and given the colors C= {c¢,,
€3, C3 ..., Cxy Where K is the maximum number of colors in G,
and given the color ¢; € C for every link / € L, and given the
comnection requests 4 = {5;d;, sadn ..., Sucl ...}, where
source node s,,€ NV and destination node 4,,€ N, find the paths
between every source-destination pairs in 4 sach that the
average number of colors on every path is minimal,

The MCSIP problem under static traffic is NP-hard since it
contains the special case of a single connection request.

B, ILP Formulation

We now develop an ILP formulation for the MCSiP
problem under static traffic. The problem with a single
connection is a special case when there is only one source-
destination pair in /. The following are given as inputs to the
problem.

N number of nodes in the network.
L: mumber of links in the network,
color? : 1 if link ij is of color ¢; 0 otherwise.

A= {sd), sacs, ..., Sl ... Sigdhy. M2 m =10 All
the source-destination pairs of the connection requests.

The ELP solves for the following variables.

2 1if link jj is used on the path between source-

destination pair s,d,, in 4; 0 otherwise.

. &¢ - 11if link color ¢ is on the path between source-

destination pair s, in A1; 0 otherwise,

Objective:
Minimize (Y. . &5)/M 1
Constraints;
Z a¥=1,wherex=5, Vm )
j
Zﬂ’:: -Zaf: =(}7 Vk#Sm- dm:V’n.l (3)
: 7
z =1, wherey=d,,v m (4)
-
o< Z(colorc'j val), Vm (5
i
L.g> Z( color? . a?), Y m 6)

i
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The objective is to minimize the average number of colors
used. Egs. (2)-(4) describe the flow constraints for each
source destination pair. Eqs. (5)-(6) specify the color

constraints that set the value of &, to 1 if the path for the
source-destination pair contains the color ¢.

C.  Heuristic Algorithms

We give two heuristics 10 solve the MCSIP problem. The
first heuristic is called Single-Path Color Reduction
Algorithm, In this algorithm, we first run Dijkstra’s algorithm
or the Bellman-Ford algorithm to find the shortest path from
the source s to the destination 4. We then try to eliminate
some of the colors while still being able to find a path from s
to d. The details are as follows.

Step L.Run a shortest path algorithm and find a path p.
Assume that the collection of all the colors on p is set C, =
{en € o, o}

Step 2. Go through every color in C, . Select the color such
that, after the links of that color are removed from the
nerwork, we run the shortest path algorithm and obtain a
shortest path with the minimum number of colors which is
also less than |C,|. Remove the links of the selected color.

Step 3. Repeat Step 1 and 2 until the number of colors on
the shortest path canno! be further reduced.

The running time is O(m’nlogn) where # is the number of
nodes and # is the total number of colors in the network,

The next heuristic is called the Single-Path All Color
Optimization Algorithm, In this algorithm, we go through all
the colors and trv to use only a subset of them on paths from s
to d. The details are as follows.

Step 1. Run a shortest path algorithm and find a path p.
Assume the number of colors on p is |Cy).

Step 2. Set the link cost to zero on the links of one color,
and find the shortest path. Repeat for all the colors in the
network and select the one that resulls in a path with the
minimum number of colors which is also less than |C,|. Keep
the costs to zero on the links of the selected color.

Step 3. Repeat Step | and 2 until the number of colors on
the shortest paths cannot be further reduced.

The running time is O(n'nlogn) where 1 is the number of
nodes and /» is the total number of colors in the network.

For the case with static traffic, we can run the heuristics
sequentially on each of the comnection requests. If the
network links have limited capacity, we may first sort the
connection requests based on the length of the shortest paths
between all the source-destination pairs, then apply the
heuristics on the requests staring with the ones that have the
longest shortest path between the source and the destination.
This is because these paths are most likely to be blocked if we
route them later.



II1. THE MINIMUM TOTAL COLOR DISJOINT-PATHS

PROBLEM

The MTCDiP problem is defined as follows. Given
network G = (N, L), where N is the set of nodes and L is the
set of links, and given the set of colors C= {¢;, ¢ ¢3 .., &}
where X is the maximum mumber of colors in G, and given
the color ¢; € C for every link / € L, find two disjoint paths
from source node s to destination node & such that the total
number of colors on the two paths are minimal.

A, Proofof NP-Completeness

There are two variations of the MTCDiP problem based on
the requirement on the path disjointness. In the first variation,
the two paths arc to be node disjoint. In the sccond variation,
the two paths are to be link disjoint. We reduce the Minimum
Set Covering problem to both variations of the problem to
prove their NPcompleteness. For the Minimum Set Covering
problem, assume the given finite set .S is {a), a3 as ..., a,}
and the collection C is {C;, C,.... C,.}.

A1 MTCDIP Problem with Node-Disjoint Requirement

We construct a graph G for an arbitrarv instance of the
Minimum Set Covering Problem, such that the graph contains
two node-disjoint paths from s to  with the minimum munber
of colors, if and only if € contains a minimum set cover C.
Following are the steps for the graph construction:

Step 1. For every element a, in S, create a network node a,

Step 2. For every subset (; to which a; belongs, create a
network link a;:> a; of color ¢, For elements a; and as, the
links are sa; and sa» respectively. There are also single links
a,.;d and a,d with color ¢,

An example is given in Fig 2. In this example, we construct
graph G for a Minimum Set Covering problem S = {a;, a., a;
a3, C={C, Co C5, Cy Cs}, Cy={ay, az}. C; = {ay, a3}, Cs
={a;, a3}, Cy = {as, a4}, Cs= {a,, a,},

Fig. 2. Reduction of the Minimum Set Covering Problem
to the MTCIDNP problem with node-disjoint requirement

In the constructed graph G, a,.;d and a,d are single links.
Therefore any two node-disjoint paths from s to d must have
one path going along s-a;-as-..-d and the other path going
along s-a>-ar..-d. if two node-disjoint paths p; and p; have
the minimum number of coloss, since each color except for ¢,
1s associated with a member in C, the collections of all the
colors on p; and p> map to a minimant subset of C that covers
all the elements. Conversely, if there is a minimum subset
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C'C C that covers all the elements, then for each node a; in
G, there is at least one member C; in C’ that contains a,, and
we choose a link a;..a; (or sa; , sa;) of the color ¢;. All the
links, together with the single links with color ¢, form two
node-disjoint paths from s to ¢ that have the mimmum
number of colors.

A.2. MTCDiP Problem with Link-Disjoint Requirement

We construct a graph G for an arbitrary instance of the
Minimum Set Covering Problem, such that the graph contains
two link-disjoint paths from s to ¢ with the minimum number
of colors, if and only if C contains a mimmum set cover C.
Following are the steps for the graph construction:

Step I. For everv element a; in 8, create nerwork nodes a;
and u,

Step 2. For every element az; in S, (except for a, if n is
even, and @, ; if n is odd), create a network node v;.

Step 3. For every subset C; to which a; belongs, create a
retwork link ua; of color ¢;.

Step 4. Create a single link su;, su;. If n is even, create
single link apy, ayy, g, Vitly .., Gz Vs G2V Villaer, Vit
o Cn gVt uVunts Vno-¥nd Vol Guid, agd If n is odd,
create single link ayv,, awy, vitls, Vi, ... Gy Vs Gav; Vo,
-V An-Vin-12: Vin-1)2Up V(n-zwd. ad. Al Of
the links are of color ¢,

Vitl2i+2, ...,

An example is given in Fig 3. In this example, we construct .
graph G for a Minimum Set Covering problem that has an
even number of elements in S, ie, § = {a, a; as a;}, C =
{Cn Ca Cs, Cy Csy, Cr= {ay, az}, C; = {as, a3}, C3 = {ay,
as}, Cy = {as a;}, Cs = {a;, az}.

Fig. 3. Reduction of the Minimum Set Covering Problem
with an even number of elements to the MTCDiP problem
with link-disjoint requirement

Another example is given in Fig 4, In this example, S has
an odd number of elements, ie, S = {a; a a3 a,; a5}, C=
{Cr Cy Gy Cy G5}, €= {ay, ax as}, Cp = {ay, az}, C; =
{a), a3 as}, Cy = {as, ay, as}, Cs= {a;, as}.

If there are two link-disjoint paths p; and p; in the
constructed graph G, every network node a; must be on
exactly one of the paths. If the two paths have the mimimum
number of colors, since each color except for ¢,is associated
with a member in C, the collections of all the colors on p; and
p> map to a minimuom subset of C that covers all the elements.
Conversely, if there is a mimimum subset C’C ( that covers
all the elements, then for each node a; in G, there is at least
one member C; in C’ that contains a; and we choose a link



ua; of the color ¢;. All the links, together with the single links
with color ¢, form two link-disjoint paths from s to J that
have the minimum number of colors.

Fig. 4 Reduction of the Minimum Set Covering Preblem with an
odd number of elements to the MTCDIP problem with link-disjoint
requirenient

For the purpose of path protection, finding link-disjoint
paths is more important than finding node-disjoint paths
because modem switching node devices normally have built-
in redundancy so that node failure is much less a concern than
link failure. Next we develop ILP formulation and heuristics
for the MTCDiP problem with the link disjointness
requirement.

Under static traffic, the MTCDiP problem is defined as
follows. Given network G = (¥, L), where N is the set of
nodes and L is the set of links, and given the colors C= {c,,
€z €z ..., gt where X is the maximum number of colors in G,
and given the color ¢; € C for every link / € L. and given the
connection requests 4 = {s;d;, Sods, ..., Sudwm ...}, Where
source node s, € A and destination node d,.€ N, find the
disjoint-paths between every source-destination pairs in A
such that the average total number of colors on the disjoint-
paths pair is minimal.

The MTCDIiP problem under static traffic is NP-hard since
it contains the special case of a single connection request.

B. ILP Formulation

We now develop an ILP formulation for the MTCDiP
problem with the link disjointness requirement. The problem
with single connection is a special case when there is only one
source-destination pair in 4. The following are given as inputs
to the problem.

e N:number of nodes in the network.

¢  [:number of links in the network.

o color?: 1iflink if is of color ¢; 0 otherwise.

. A= 1sidy, 52y, ..., Splpm ... Saedys}, M= m = 10 All
the source-destination pairs of the connection requests.
The ILP solves for the following variables.

. @’ 1 if link i is used on path p; between source-
destination pair 5,4, in 4; 0 otherwise.

. A2 1if link i is used on path p; between source-
destination pair s,d,, in 4; 0 otherwise.

. &; . 1if link color ¢ is on path p; between source-
destination pair s,.d,, in 4; 0 otherwise.
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. o, 1 if link color c is on path p, between source-
destination pair 5.4, in 4; 0 otherwise.

*  overlap : 1 if link color ¢ is on both paths p; and
P> between source-destination pair 5,4, in 4; 0 otherwise.

Objective:

Minimize (Y Y (37,+8%, -overlapt) M (D)

Constraints:
Y ai=1, where x=5,, ¥ m 8)
7

ZO;::‘ - Zaf:‘;’ =0, Vi#Sm dn Vi Q)

! J

Z ar=1.where y=d,.v m (10)
i B =1, where x=s,, V m (11)
7
S Br =Y B =0.Vits, dm Ym  (12)
'Z: ﬁjj’=;,wherey=dm.v n (13)
’
85,5 D (colori +a2), ¥'m (14)
i
L85> D (color? - gh), I'm (15)
“
& < Z( color? « B2). V'm (16)
) (17)

L& = Z( color! « 1), V'm
"

0<1-8, +1-6, +2-overlap’, <2, YV m (18)
dtpis. Vij VYm (19)

The objective is 10 minimize the average total number of
colors used over the two link-disjoint paths for each source-
destination pair. Eqs. (8)-(10) describe the flow constraints for
one path and Eqs. (11)-(13) describe the same for the second
path. Eqs. (14)-(17) describe the color constraints that
determine the color used on the two paths. Eq. (18) is the
ovetlapping colors constraint that determines the set of
overlapping colors for a source destination pair. Eq. (19} is
the link-disjoint constraint for the two paths.

C.  Heuristic Algorithms

We give two heuristics to solve the MTCDiP problem with
the link disjointness requirement. The first heuristic is called
the Disjoint-Paths Color Reduction Algorithm. In this
algorithm, we first un Suurballe’s algorithm to find two link-
disjoint paths with the minimal total cost from the source



node s to the destination node d. We then try to eliminate
some of the colors while still able to find two link-disjoint
paths from s to 4. The details are as follows.

Step 1. Run Suurballe’s algorithm and find two link-
disjoint paths p; and p, Assume the collection of all the
colors on p; und p; is set C, = {c;, €a .., G}

Step 2. Go through everv color in C,, . Select the color such
that, afier the links of thar color are removed from the
network, we run Suurballe’s algorithm again and obiain wo
link-disjoint paths with the minimum number of total colors
which is also less than |C,|. Remove the links of the selected
color.

Step 3. Repeat Step 1 and 2 until the number of colors on
the link-disjoint paths cannot be further reduced.

The mnning time is O(m°n’logn) where # is the number of
nodes and m is the total number of colors in the network.

The next heuristic is called the Disjoint-Paths All Color
Optimization Algorithm. In this algorithm, we go through all
colors and try to use omly a subset of them on the disjoint
paths from s o 4. The details are as follows.

Step 1. Run Suwrballe’s algorithm and find two link-
disjoint paths. Assume the total number of colors on the two
paths is |Cyl.

Step 2. Set the link cost to zero on the links of one color,
then run Suurballe’s algorithm and find two link-disjoint
paths. Repeat for all the colors in the network and select the
one that results in two link-disfoint paths with the minimum
number of colors which is also less than |C,|. Keep the costs
to zero on the links of the selected color.

Step 3. Repeat Step I and 2 until the number of colors on
the link-disjoint paths cannot be further reduced.

The running time is O(n° n’logn) where # is the number of
nodes and m is the fotal number of colors in the network.

For the case with static traffic, we can run the heuristics
sequentially on each of the connection requests. If the
network links bave limited capacity, we may first sort the
connection requests based on the length of the shortest paths
between all the source-destination pairs, then apply the
heuristics on the requests staring with the ones that have the
longest shortest path between the source and the destination.
This is because these paths are most likely to be blocked if we
route them later.

IV. THE MINIMUM OVERLAPPING COLOR DISIOINT-
PATHS PROBLEM

The MOCDIP problem is defined as follows. Given
network G = (N, L), where W is the set of nodes and L is the
set of links, and given the colors C = {¢,, ¢» €3 ..., cx} where
K is the maximum number of colors in G, and given the color
¢ € C for every link / € L, find two link-disjoint paths from
source node s to destination node « such that they share the
minimum number of common colors.
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4. Proof of NP-Completeness

We reduce a known NP-complete problem to the MOCDiP
problem. The known NP-complete problem in this case is the
problem of finding two link-disjoint paths from source node s
to destination node < that are completely SRLG-disjoint
[11]{23]. We replace every SRLG with a different color. If we
were able to solve the MOCDHP problem and find two link-
disjoint paths from s to 4 with the minimum overlapping
colors, then the paths should also be color-disjoint (i.e.,
SRLG+disjoint) if such color-disjoint paths exist in the
network,

Under static traffic, the MOCDIP problem is defined as
follows. Given network G = (¥, L). where N is the set of
nodes and L is the set of links, and given the colors C = {¢,,
¢a Cs ..., Cx} where X is the maximum number of colors in G,
and given the color ¢; € C for every link / € L, and given the
connection requests A = {s5,d;, sads, ... Spdm ...}, where
source node s, € N and destination node d,€ N, find the
disjoinmt-paths between every source-destination paits in /
such that the average number of colors shared by each
disjoint-paths pair is minimal. _

The MOCDIP problem under static traffic is NP-hard since
it contains the special case of a single connection request.

B.  ILP Formulation

We now develop an ILP formuiation for the MOCDiP
problem. The problem with single connection is a special case
when there is only one source-destination pair in 4. The
following are given as inputs to the problem.

N: number of nodes in the network.
L: number of links in the network.
. color? : 1 if link jj is of color ¢; 0 otherwise.
o A={sd, s:ds ..., S ... Sy}, M2 m > 10 All
the source-destination pairs of the connection requests.

The ILP solves for the following vanables.

. af - 1 if link i is used on path p; between source-
destination pair s,d,, in 4; 0 otherwise,

e fA%:1if link if is used on path p, between source-
destination pair 5,4, in /I; 0 otherwise.

* o/, 1if link color ¢ is on path p; between source-
destination pair s,¢,, in; 0 otherwise.

e ;. :1iflink color ¢ is on path p; between source-
destination pair s,,d,, in /1; 0 otherwise.

. overlap® : 1 if link color ¢ is on both p; and p:
between source-destination pair 5,4, in A, 0 otherwise.

Objective;

Minimize (3. D overlap?, )M (20)



Constraints:

0<1-87 +1-8; +2-overlapt, <2, Vm (21)

z @’ =1, where x = s, Y'm ()
-
Zaj‘: - Zg[r";’ =0, Vik#5y de Tm (23)
‘z: a” =JI, where y=d,,..¥ m 24
r
Z BY=1 where x =5, Vm 25)
7 N
SBE 3B =1 Vitsydy, Ym (26)
i B = 1 where v=d,.v m 2n
j
o0 < Z( color? « &) (28)
if
L6 > Z( color? « o) (29
if
o, < Z( color’ « B9), V'm (30)
ij
L-&;,2 Z( color? « B9), ¥ m (31
o+ By SUI, Yij ¥m (32)

The objective is to reduce the average number of
overlapping colors on the two disjoint paths. Eq. (21) is the
overlapping colors constraint that determines the set of
overlapping colors for a source destination pair. Eqs. (22)-
(27) are the flow constraints for the two disjoint paths. Eqs.
(28)-(31) are the color constraints that determine the set of
colors on the two paths. Eq. (32) is the link disjoint constraint.

C.  Heuristic Algorithms

We give three heurnstic algorithms for solving the
MOCDIP problem. The first heuristic is the Simple Two-Step
Algorithm, This algorithm is very simple and we use it 1o
¢stablish an upper bound on the number of overlapping colors
for the next two heuristics which we discuss in this section
Details of the Simple Two-Step Algonthm are as follows:

Step 1. Run Dijkstra’s algorithm and find shortest path p,.

Step 2. Increase the cost of a link if the color of the link is
on p;. The additional cost is proportional to the number of
links of that color on p;.

Step 3. Remove all links on p,. Run Dijkstra’s algorithm
again and find the second shortest path p,,

p; and p, are link-disjoint. Since the costs on the links of
those colors on p; are increased, it is expected that p; and p;
share fewer colors. The munning time of this heuristic is the
same as that of Dijkstra’s algorithm, which is O(nlogn).
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The second heuristic is called Minimum-Color First-Path
Algorithm. It differs from the Simple Two-Step Algorithm in
that, at the first step, rather than finding the shortest path, this
algorithm uses one of the heuristics in Section I1.C to find one
path from s to & with the minimum number of colors. The
details are as follows:

Step 1. Run Single-Path All Color Optimization Algorithm
in Section Il and find the first path p;.

Step 2. Increase the cost of a link if the color of the link is
on p;. The additional cost is proportional 1o the number of
links of that color on p;.

Step 3. Remove all links on p,. Run Dijkstra’s algorithm
and find path p:.

The rnning time is O(mrnlogn) where » is the number of
nodes and m is the total number of colors in the network.

Both the Simple Two-Step Algorithm and the Minimum-
Color First-Path Algorithm follow a two-step approach. They
arc straightforward and work on networks that don’t contain
the “trap” topology [23]. For networks with the “tap”
topology, a two-step approach may fail to find two link-
disjoint paths even if such paths exist in the networks. On the
other hand, Suurballe’s algorithm alwayvs finds two link-
disjoint paths as long as they exist. The third heuristic for the
MOCDiIP problem is called the Joint-Search Minimum
Overlapping Color Algorithm, It wutilizes Suurballe’s
algorithm. The details are as follows:

Step 1. Run Suurballe’s algorithm and find two link-
disjoint paths p; and p;.

Step 2. Increase the cost of a link if the color of the link is
on p;. The additional cost is proportional to the number of
links of that color on p,.

Step 3. Remove all links on p;. Run Dijkstra’s algorithm
and find path p;".

Step 4. Increase the cost of a link if the color of the link is
on p;. The additional cost is proportional to the number of
links of that color on p,.

Step 5. Remove all links on p.. Run Dijkstra’s algorithm
and find path p..

Step 6. Compare the total colors of paths p; and p,” with
the total colors of paths p; and p;". The paths with fewer total
colors are returned as outputs. :

The minning time is O(n’logn) where n is the number of
nodes in the network.

For the case with static traffic, we can mn the heuristics
sequentially on each of the connection requests. If the
network links have limited capacity, we may first sort the
connection requests based on the length of the shortest paths
between all the source-destination pairs, then apply the
heuristics on the requests staring with the ones that have the
longest shortest path between the source and the destination.
This is because these paths are most likely to be blocked if we
route them later.



V. SIMULATIONS

We have developed ILP formulations and heuristics for
three minimum-color path problems. We now solve the ILPs
using CPLEX [26} and compare the results with those of the
heunistics on networks that are randomly gencrated using
LEDA {27]. The network size ranges from 10 nodes to 40
nodes. The nodal degree ranges from 2.6 to 3.0. The color
intensity ranges from 1 to 20. The network color intensity is
defined as the average mumber of links of the same color.
When the color intensity 15 1, every network link has a
different color. The higher the color intensity, the fewer colors
a network has. If the color intensity is equal to the mumber of
links, then all links have the same color. We assume that each
network link has the same probability of being any given
colors,

4. Minimum-Color Single Path Problem

We have developed an ILP formulation and two heuristics
for the MCSiP problem, i.e., the Single-Path Color Reduction
Algorithm (SPCRA) and the Single-Path All Color
Optimization Algonthm (SPACOA). We run computer
simulations for both the individual connection request
problem and the static traffic problem.

A. 1. Individual Connection Request Problem

For every source-destination pair in the networks, we solve
the ILP and use the heuristics to obtain the minimum-color
path. We then compare the average numbers of colors on all
the paths. To establish an upper bound for the results of the
heuristics, we alse run Dijkstra’s shortest path algorithm on
all the source-destination pairs. Two sets of the results are
depicted in Fig. 5 and Fig. 6. Results on other network
topologies are similar.
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Fig 5. Average number of ¢olors on paths of all source-destination
pairs vs. network color intensity. Network nodal degree = 2.6
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Fig 6. Average number of colors on paths of all source-destination
pairs vs. network color intensity. Network nodal degree = 3.0

Based on the simulation results, the paths obtained from the
Single-Path All Color Optimization Algorithm are closest to
the optimal {LP solutions in the average numbers of colors on
the paths. This is because SPACOA selects optimal colors
from all colors in the network while SPCRA is restricted to
the colors on the initial shortest paths.

We note that, as the nodal degree increases, the number of
colors on the path reduces. The reason for this behavior is
that an increase in nodal degree results in a wider choice of
available routes for each connection request. Furthermore, an
increase in nodal degree reduces the average hop distance for
each connection, thereby reducing the number of colors. We
also note that, color intensity has an impact on the number of
colors on the paths as well. When the color intensity is 1, all
links in the network have a distinct color; hence, the number
of colors for a given path is simply the hop distance of that
path, and the average number of colors for each path is simply
the average hop distance in the network. As the color intensity
increases, the total number of links with the same colors
increases. As a result, the number of colors on the path
decreases with an increase in color intensity. The network
topology and the size of the network also affect the number of
colors on the path. Larger networks with more nodes result in
a higher average hop count for paths; hence, for the same
nodal degree and color intensity, paths in a network with
more nodes will have a greater number of colors than paths in
a network with fewer nodes.

A.2. Static Traffic Problem

The static connection requests include connections between
all the source-destination pairs in the networks, We solve the



ILP for all the requests to obtain the paths with the minimum
average number of colors, We then apply the heuristics on the
same set of requests. To establish an upper bound for the
results of the heuristics, we also run Dijkstra’s shortest path
algorithm. We use a randomly generated 10-node network of
nodal degree 2.6 for the simulations. The capacity of every
link is assumed to be infinite. The results are depicted in Fig.
7. The simulation results confirm that the paths obtained from
the Single-Path All Color Optimization Algorithm are closest
to the optimal ILP solutions

L5

Average Number of Colors

T ——
X
1.2
—DO—ILP Solution
11 — —%— SPACOA
—% —SPCRA \u
= = &= = Dijjkstra's Alogrithm
‘l 1 1 1
1 2 3 4 5

Color Intensity

Fig 7. Average number of colors on paths of static connection requests
vs. network color intensity

B.  Minimum Total-Color Disjoint-Paths Problem

We have developed an ILP formulation and two heuristics
for the MTCDIP problem, ie., the Disjoini-Paths Color
Reduction Algorithm (DPCRA) and the Disjoint-Paths All
Color Optimization Algorithm (DPACOA). We run computer
simulations for both the individual connection request
problem ang the static traffic problem.

B. 1. Individual Connection Request Problem

For every source-destination pair in the networks, we solve
the ILP and use the heuristics to obtain link-disjoint paths
with minimum total number of colors. We then compare the
average numbers of colors on all the paths. To establish an
upper bound for the resulis of the heuristics, we also run
Suurballe’s algorithm on all the source-destination pairs. Two
sets of the results are depicted in Fig. 8 and Fig. 9. Results on
other network topologies are similar.

Based on the simulation results, the lirk-disjoint paths
obtained from the Disjoint-Paths All Color Optimization
Algorithm are closest to the optimal ILP solutions in the
~ average mumnbers of total colors on the paths. This is because

DPACOA selects optimal colors from all colors in the
network while DPCRA is restricted to the colors on the initial
shortest paths.

The network nodal degree, the color intensity, and the
network size have simitar impacts on the number of colors on
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the disjoint-paths as in the simulations in Section V. A 1.
Higher nodal degree, or greater color intensity, or smaller
network size all contribute to fewer colors on the disjoint-
paths.
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Fig 8. Average number of colors on link-disjoint paths of all source-

destination pairs vs. network color intensity. Network nedal degree =2.6
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Fig 9. Average number of colors on link-disjoint paths of all source-

destination pairs vs. network color mtensity. Network nodal degree = 3.0

B.2. Static Traffic Problem

The static connection requests include connections between
all the source-destination pairs in the networks. We solve the
ILP for all the requests to obtain the disjoint-paths with the
minimum average number of total colors. We then apply the
heuristics on the same set of requests. To establish an upper
bound for the results of the heuristics, we run Suurballe’s
algorithm. We usc a randomly generated 10-node network of
nodal degree 2.6 for the simulations. The capacity of every



link is assumed to be infinite. The results are depicted in Fig.
10. The simulation results confirm that the paths obtained
from the Disjoint-Paths All Color Optmuzanon Algorithm are
closest to the optimal ILP solutions.
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Fig 10. Average number of colors on paths of static connection
requests vs. network color intensity

C.  Minimum Overlapping Color Disjoint-Paths Problem

We have developed an ILP formulation and three heuristics
for the MOCDiIP problem, ic., the Simple Two-Step
Algorithm (STSA), the Minimum-Color First-Path Algorithm
(MCFPA), and the Joint-Search Minimum Overlapping Color
Algorithm (JSMOCA). We mun computer simulations for both
the individual connection request problem and the static
traffic problem..

C. 1. Individual Connection Request Problem

For every source-destination pair in the networks, we solve
the ILP and use the heuristics to obtain link-disjoint paths
with minimum number of overlapping colors. We then
compare the average numbers of overlapping colors on all the
paths. The STSA is used as an upper bound for the other two
heuristics. Two scts of the results are depicted in Fig. 11 and
Fig. 12. Results on other network topologies are similar.

Based on the simulation results, the link-disjoint paths
obtained from the Joint-Search Minimum Overlapping Color
Algorithm are closest to the optimal ILP solutions in the
average numbers of overlapping colors on the paths. This is
because JSMOCA selects optimal colors from all colors in the
network while MCFPA is restricted to the colors on the initial
shortest paths.

The number of overlapping colors is directly related to how
susceptible the two paths are to a single failure event. As the
color intensity increases. there are fewer colors in the network,
and it is more likely that the two paths will share a greater
mumber of colors. Thus, the paths become more susceptible to
common failures,
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Fig 11. Average number of overlapping colors on link-disjoint paths
of all source-destination pairs vs. network color intensity.
20-node network. Nodal degree = 2.6
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Fig 12. Average number of overlapping colors on link-disjoint
paths of all source-destination pairs vs, network color intensity.
40-node network. Nodal degree = 3.0

C.2. Static Traffic Problem

The static connection requests contain all the source-
destination pairs in the networks. We solve the ILP for all the
requests 10 obtain the disjoint-paths with the minimum
average number of overlapping colors. We then apply the
heuristics on the same set of requests. The STSA is used as an
upper bound for the other two heuristics. We use a randomly
generated 10-node network of nodal degree 2.6 for the
simulations. The capacity of every link is assumed to be
infinite. The number of overlapping colors is 0 for lower color
intensities: hence, we only present results for the higher color



intensities. The results are depicted in Fig. 13. The simulation
results confirm that the paths obtained from the Joint-Search
Minimum Overlapping Color Algorithm are closest to the
optimal ILP solutions.
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Fig 13. Average number of colors on paths of static connection requests
vs. network color ntensity

VI. CONCLUSION

In this paper we discussed a relatively new class of path
routing problems referred to as minimum-color path
problems. These problems have practical significance in
applications that require finding paths satisfying various
reliability objectives such as minimizing the probability of
faiture on a path. We discuss three problems - MCSiP,
MTCDiP, and MOCDIP. We prove that these problems are
NP-complete and formulate them as ILPs. The solution of the
ILPs are imractable for larger networks, and hence we
propose various heuristics. The heuristics execute in
polynomial times and yield solutions that are very close to the
optimal.

Various factors affect the number of colors on the paths,
including the nodal degree, the color intensity, and the
mumber of nodes in the network, An increase in the nodal
degree helps reduce the number of colors on the paths for the
problems that attempt to minimize the total number of colors
on the path (MCSiP, MTCDiP). This is due to the fact that
there is a greater choice of routes for the connections.
SPACOA performs the best while reducing the total number
of colors on a single path (MCSiP). whereas DPACOA is the
most successful with the two link-disjoint path problem
{(MTCDiP).

The color intensity also affects the number of colors on the
paths. An increase in the color intensity increases the number
of overlapping colors among two link-disjoint paths, thereby
making both paths more susceptible to the same failure
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(MOCDIiP). JSMOCA reduces the total number overlapping
colors and is reasonably close to the ILP's optimal solution.

The generic nature and the wide-ranging applications of
these problems make them a perfect candidate for further
study. A possible future contribution would be to study the
problems with different failure probabilities for each color. In
the present environment, the failure probabilities of all colors
are assumed to be the same, and hence the number of colors
on the path directly relates to the failure probability of the
path. Another interesting work would be to consider the
muttiple-path problems (MTCDIP and MOCDIP) without the
link~disjoint constraint. In this case. the primary and backup
paths mayv share a link if the probability of that link failing is
low, Another challenge is solving the minimum-color path
problems in a dynamic eovironment. In a dynamic
environment, connection requests arrive one at a time, stay for
a finite time, and then depart. The typical objective in the
dvnamic environment is to reduce the blocking of future
connections.
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