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Abstract 

The k-domination number of a graph is the cardinality of a smallest set of 
vertices such that every vertex not in the set is adjacent to at least k vertices of 
the set. We prove two bounds on the k-domination number of a graph, inspired 
by two conjectures of the computer program Graÿti.pc. In particular, we show 
that for any graph with minimum degree at least 2k − 1, the k-domination 
number is at most the matching number. 

1. Introduction 

For a positive integer k, a k-dominating set of a graph G is a set S of vertices 
such that every vertex in V (G) \ S has at least k neighbors in S. For a graph 
G, the minimum cardinality of a k-dominating set is called the k-domination 
number of G, and is denoted k(G). This invariant was introduced by Fink and 
Jacobson [6], and has been studied by a number of authors including [2, 4, 5, 7, 
8, 9, 10]. 

We will use some standard terminology from graph theory, for which we refer 
the reader to [1]. The independence number of a graph G is the cardinality of 
an independent set of maximum size, and will be denoted (G). The matching 
number of a graph G is the cardinality of a matching of maximum size in G, 
and will be denoted 0(G). 

If S is a set of vertices of G, then G[S] will denote the subgraph of G induced 
by S, and G−S will denote the subgraph of G induced by V (G)\S. The degree 
of a vertex v will be denoted d(v), and the minimum degree of G will be denoted 
�(G). 

The following result is due to Caro and Roditty [2]: 
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Theorem 1. Let r and k be positive integers. Let G be a graph of order n where 
�(G) � r+1 k − 1. Then 

r 
r 

k(G) � n. 
r + 1 

We will need the r = 1 version of this theorem. Namely: 

Corollary 2. Let G be a graph of order n where �(G) � 2k − 1. Then 

k(G) � n/2. 

In this note, we will improve and generalize Corollary 2. Our frst result is 
the following: 

Theorem 3. Let k be a positive integer, and G a graph of order n. Let H � 
V (G) be the set of vertices of degree less than 2k − 1. Then 

k(G) � 0(G − H) + |H | . 

If we suppose that H is empty, we get the following succinct result: 

Corollary 4. Let k be a positive integer. For any graph G with �(G) � 2k − 1, 

k(G) � 0(G). 

To see that equality can be achieved in the corollary above, even for graphs 
that do not have perfect matchings, consider a complete bipartite graph with 
2k − 1 vertices in one part and more than 2k − 1 vertices in the other part. 

Our second result is the following: 

Theorem 5. Let k be a positive integer, and G a graph of order n. Suppose 
that in G no two vertices of degree less than 2k −2 are adjacent. Let H � V (G) 
be the set of vertices of degree less than 2k − 1. Then 

n + (G[H ]) 
k(G) � . 

2 

Complete graphs of order 2k − 1 not only demonstrate that this bound is 
sharp for every k, but also provide examples where this bound is sharp while 
Theorem 3 is very weak and Corollary 2 cannot even be applied. Now, if we 
suppose k = 2 and the graph is bipartite, we get the following result of Fujisawa 
et al. [7]: 

Corollary 6. If G is a bipartite graph, then 

2(G) � 3 (G).
2 

These results were inspired by two conjectures of the computer program 
Graÿti.pc. The program conjectured the special cases of Theorems 3 and 5 
where k = 2 (see Conjectures 388 and 392a of [3]), and these conjectures were 
announced at the Southeastern Conference on Combinatorics, Graph Theory 
and Computing, held in Boca Raton, March 2010. 
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2. Proof of Theorem 3 

We need the following folklore result: 

Lemma 7. For any graph G, V (G) can be partitioned into two parts S and T , 
such that each vertex v in S has at least d(v)/2 neighbors in T , and each vertex 
w 2 T has at least d(w)/2 neighbors in S. 

Proof. Consider the partition of V (G) into S and T such that the number of 
edges between S and T is maximized. Then any vertex must have at least half 
its neighbors in the other part. 

If G is a graph with �(G) � 2k − 1 then by Lemma 7 we can partition V (G) 
into two parts S and T so that each vertex has at least k neighbors in the other 
part. Corollary 2 is then an easy consequence: both S and T are k-dominating 
sets, and at least one of them has size at most n/2. 

Proof of Theorem 3. By Lemma 7, there exists a partition of the vertices of 
G − H into two parts S and T such that each vertex in S has at least half its 
neighbors in T , and each vertex in T has at least half its neighbors in S. 

Let B be the bipartite subgraph of G − H consisting of the edges that are 
between S and T , and let M be a maximum matching in B. Let A be the subset 
of S containing those vertices that are unmatched by M . If A = ;, then defne 
C = D = ;. Otherwise, consider the set of vertices that are reachable from A 
by an M -alternating path. Let C be the subset of S that is reachable in this 
way, and D the subset of T that is reachable in this way. Note that A � C. 

By the maximality of M , there is no M -augmenting path in B and so all 
vertices in D are matched by M . Furthermore, by the construction, M matches 
each vertex in D with a vertex in C. It follows that 

|M | = |D [ (S \ C)| . 

Note that by the construction, there are no edges, in G −H , between C and 
T \ D. Thus, for any vertex in C, at least half its neighbors are in D. Similarly, 
for any vertex in T \ D, at least half its neighbors are in S \ C. 

Let 
F = D [ (S \ C) [ H. 

We claim that F is a k-dominating set for G. For, consider any vertex v that 
is not in F . As v is not in F , it is not in H either, and so has degree at least 
2k − 1. At least half of the neighbors of v are in F , since any neighbor of v that 
belongs to H is in F , and at least half of the remaining neighbors are in F . It 
follows that v has at least k neighbors in F . 

Thus, 

k(G) � |M | + |H | � 0(G − H) + |H | . 
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Figure 1: The graph F , for k = 2. 

3. Proof of Theorem 5 

Proof of Theorem 5. By the assumption, the set of vertices of degree less than 
2k − 2 is an independent set. Let I be a maximal independent set in G[H ] 
containing all vertices of G of degree less than 2k − 2, and let J = G − I. Our 
strategy will be to construct a k-dominating set of G by taking the union of 
I and a minimum k-dominating set of a graph obtained by augmenting J in a 
certain way so that we may appeal to Corollary 2. 

We will use the complete bipartite graph F = K2k−1,2k−1 to form a graph 
J� with �(J�) � 2k−1 in the following manner. For each vertex x of J of degree 
less than 2k − 1: introduce d((2k − 1) − dJ (x)) /2e copies of F and attach each 
to x by two edges such that the ends of the edges are adjacent. See Figure 1. 

Let D� be a minimum k-dominating set of J� . We claim that D� contains 
at least 2k −1 vertices from each attached F . For, if D� has less than k vertices 
from one partite set of the F , then it must have every vertex from the other 
partite set except possibly the vertex w attached to x; and if vertex w 2/ D� 

then at least k − 1 vertices from the other partite set must be in D� . 
Also, we claim that we can choose D� so that it has exactly 2k − 1 vertices 

from each attached F . For, if it has more, these can be re-arranged to be one 
partite set and x. Further, by considering all the possibilities, it follows that an 
x attached to a F has exactly one neighbor in that F that is in D� . 

Since �(J�) � 2k − 1, we know from Corollary 2 that |D�| � |V (J�)|/2. Set 
D = I [ (D� \ V (J)). From the above it follows that 

|V (J)| n + |I| n + (G[H ]) 
|D| � |I| + = � . (1) 

2 2 2 

It remains only to show that D is a k-dominating set of G. 
Note that all vertices of J that had no F graphs attached are k-dominated 

by D. So, let x be a vertex which had at least one of the F graph attached. If 
x 2 D then there is no problem; so assume x 2/ D. 

By the choice of I, dG(x) � 2k − 2. By the defnition of J , vertex x has 
dG(x) − dJ (x) neighbors in I. If dG(x) � 2k − 1, then x has at most d(dG(x) − 
dJ (x))/2e neighbors in D� \ D. Since x is k-dominated by D� , it has at least 
k − d(dG(x) − dJ(x))/2e neighbors in J , and therefore at least k neighbors in 
D. That is, x is k-dominated by D. 

So assume dG(x) = 2k − 2. Then dJ (x) < 2k − 2, since otherwise we 
contradict the maximality of I. It follows again that vertex x has at least as 
many neighbors in I as it has in D� \ D, and so is k-dominated by D. 
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Consequently, D is a k-dominating set of G, and together with (1), this 
completes the proof. 
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