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We consider the problem of maximizing the reliability of connections in optical
mesh networks against simultaneous failures of multiple fiber links that be-
long to a shared-risk link group (SRLG). We study the single-lightpath,
parallel-lightpaths, and lightpath protection problems for connections be-
tween two end nodes, as well as the lightpath-ring problems for connections of
three or more end nodes. We first study the special problems where all SRLGs
have the same failure probability. In these problems, every SRLG is repre-
sented by a distinct color and every fiber link is associated with one or more
colors, depending on the SRLGs to which the link belongs. We formulate the
problems as minimum-color lightpath problems. By minimizing the number of
colors on the lightpaths, the failure probability of the lightpaths can be mini-
mized. We prove the problems to be NP-hard. We then extend the results to
the general problems where the failure probabilities of the SRLGs may differ.
Heuristic algorithms are proposed for larger instances of the problems, and
the heuristics are evaluated through simulations. © 2008 Optical Society of
America

OCIS codes: 060.4261, 060.4251, 060.4257.
1. Introduction
In mesh WDM networks, users communicate with each other via end-to-end light-
paths [1,2]. Three types of connections are commonly used for communication between
two end nodes: a single lightpath, multiple parallel lightpaths, and a working
lightpath–protection lightpath pair. A single lightpath may reach a data rate of
40 Gbits/s or even higher [3,4]. Two or more parallel lightpaths are often used
between backbone routers to carry traffic simultaneously, resulting in a higher aggre-
gate data rate, with the additional benefits of load balancing [5]. The parallel light-
paths are link disjoint so that the failure of one fiber link does not disconnect the end
nodes entirely.

Since a single lightpath is vulnerable to fiber link failures, it is often required to
provide a high degree of reliability for this type of connection, which leads to the third
configuration, i.e., a working lightpath–protection lightpath pair. In this configura-
tion, a link-disjoint protection lightpath is precomputed and provisioned for every
working lightpath [6–8]. Such protection schemes provide 100% reliability against any
single-link failure in the network. However, due to various risk factors such as natu-
ral and man-caused catastrophes, disjoint fiber links may belong to the same shared-
risk link group (SRLG) and fail simultaneously [9,10]. Therefore it is insufficient for
the lightpaths to be merely link disjoint. Rather, it is necessary to find a working and
a protection lightpath that are SRLG disjoint [11].

A drawback of SRLG-disjoint protection schemes is that if many SRLGs exist in the
network it may be difficult, or even impossible, to find a working and a protection
lightpath between two end nodes that are completely SRLG disjoint [12]. Thus, it may
be difficult to provide 100% reliability against certain failure events. For cases in
which 100% reliability is not possible, the objective should be to find one or more
lightpaths for each connection, such that the reliability for each connection is maxi-
mized, or equivalently, the failure probability of the connection is minimized.

For connections of three or more end nodes, such as those in multiparty video con-
ferencing, internet telephony, and online gaming [13–15], a common practice for
achieving a high degree of reliability is establishing lightpaths between the end nodes
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such that the lightpaths form a ring, which keeps the end nodes connected even when
a single fiber link fails [16,17]. However, if two of more fiber links on the ring belong
to the same SRLG, a failure of that SRLG may still disconnect the end nodes. There-
fore it is necessary to minimize the failure probability of the lightpaths on the ring.

In this work, we introduce and study the single-lightpath problem, the parallel-
lightpaths problem, and the lightpath protection problem for connections between two
end nodes. We also study the lightpath-ring problem for connections of three or more
end nodes. For each of the problems, we first consider the special case in which all
SRLGs have uniform failure probability. We then discuss the problems in the more
generic case in which the SRLGs can have different failure probabilities.

When all SRLGs have uniform failure probability, we use a unique color to dis-
tinctly represent each SRLG. If multiple links belong to the same SRLG, then all of
these links are marked with the corresponding color. If a link belongs to multiple
SRLGs, then that link has multiple colors. Since all SRLGs have the same failure
probability, minimizing the failure probability of a lightpath is equivalent to minimiz-
ing the number of SRLGs, or colors, on the lightpath. For the single-lightpath prob-
lem, by minimizing the number of colors on the lightpath, the failure probability of
the lightpath can be minimized. For the parallel-lightpaths problems, by minimizing
the total number of colors on the parallel lightpaths, the probability that a failure
occurs to one of the lightpaths is minimized. For the lightpath protection problem, by
minimizing the number of overlapping colors on the working lightpath and the protec-
tion lightpath, the probability that a single failure event will cause both lightpaths to
fail simultaneously is minimized. For the lightpath-ring problem, if we minimize the
total number of colors on the lightpath ring, we minimize the failure probability of
any part of the ring. On the other hand, if we minimize the overlapping colors of all
the lightpaths of consecutive end nodes along the ring, we also minimize the probabil-
ity of simultaneous failures of lightpaths that would disconnect the end nodes.

In this study, we evaluate the computational complexity of various minimum failure
problems and prove them to be NP-hard [18]. NP-hard problems have the property
that solutions that yield optimal results with polynomial time complexity have never
been found [19]; thus, solutions for these problems have high computational complex-
ity and tend to be infeasible for large networks. A problem may be found NP-hard if
an existing NP-hard problem can be reduced to it using an algorithm of polynomial
time complexity [19,20]. For a proven NP-hard problem, attempts can then be made to
develop efficient heuristic algorithms.

Despite the seeming similarities between minimum-color lightpath problems and
various versions of minimum-cost path problems, the minimum-color lightpath prob-
lems are much harder to solve. For many minimum-cost path problems, there exist
efficient algorithms that solve the problems with polynomial complexity. For instance,
Dijkstra’s algorithm can be used to find a single minimum-cost path between two end
nodes [20], and Suurballe’s algorithm can be used to find two link-disjoint paths with
the minimum total cost [21,22]. However, for the minimum-color lightpath problems,
many of them are NP-hard, as shown later in this study. A thorough search of existing
literature yields limited results in the area of interest. One relevant study looked into
the problem of establishing a spanning tree using the minimum number of labels (i.e.,
colors) [23]. It proved the problem to be NP-hard and also proposed two heuristic algo-
rithms. The first heuristic is named the edge replacement algorithm. The algorithm
first forms an arbitrary spanning tree, then tries to replace each edge with a different
edge that can reduce the total number of colors in the tree. The second heuristic is
named the maximum vertex covering algorithm. This algorithm starts with an empty
spanning tree, then scans through all the colors and chooses the one that covers the
most uncovered vertices. This procedure is repeated until a spanning tree is formed.
The studies in [24] analyzed the performance of the two heuristics and showed that
the first can be arbitrarily bad while the second achieves a logarithmic approximation
ratio. The work in [25] further investigated the second algorithm with slightly better
approximation.

It should be pointed out that the minimum-color lightpath problems discussed in
this study also apply to other areas of networking. For instance, a nationwide optical
network may consist of fiber links that belong to different network carriers. A light-
path is often less expensive to establish and operate if it involves fewer carriers, even
if the length of that lightpath is suboptimal. The problem of minimizing the number of
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different network carriers along a lightpath thus becomes a minimum-color lightpath
problem if we represent every carrier with a distinct color. Other instances of network
heterogeneousness also exist and may raise similar issues that add to the relevance of
the study in this work.

The rest of the paper is organized as follows. In Section 2, we study the single-
lightpath problem, the parallel-lightpaths problem, and the lightpath protection prob-
lem for connections between two end nodes, as well as the lightpath-ring problems for
connections of three or more end nodes. We prove these problems to be NP-hard and
develop heuristic solutions for them. In Section 3, we present computer simulations
and results for the heuristics. In Section 4, we conclude the paper.

2. Lightpath Routings for Maximum Reliability
For each of the problems in this section, we first consider the special case in which all
SRLGs have uniform failure probability, and SRLGs are represented distinctly by dif-
ferent colors. Once the NP-hardness of the problems has been proved for this special
case, we discuss the general case in which the SRLGs have different failure probabili-
ties.

In the remaining discussions, we assume that all fiber links are bidirectional and
that full wavelength-conversion capability is available at every network node; thus,
the wavelength-continuity constraint is not a concern in our study. The latter assump-
tion does not compromise the NP-hardness of the problems, since adding the
wavelength-continuity constraint only increases the hardness of the problems.

2.A. Single-Lightpath with Minimum Failure Probability
For the special case in which all SRLGs have uniform failure probability, each SRLG
is distinctly represented by a color. We refer to this instance of the single-lightpath
problem as the minimum-color single-lightpath (MCSL) problem of finding a single
lightpath between two end nodes such that it has the minimum number of colors. For
the purpose of NP-hardness analysis, if we prove the MCSL problem to be NP-hard
for networks containing only single-color links, then it will be straightforward to con-
clude that the MCSL problem is also NP-hard for networks possibly containing multi-
color links, since the former is a special case of the latter.

The MCSL problem is defined as follows. Given network G= �N ,L�, where N is the
set of nodes and L is the set of fiber links, and given the set of colors C
= �c1 ,c2 ,c3 , . . . ,cK�, where K is the maximum number of colors in G, and given the
color cl�C on every link l�L, find one lightpath from source node s to destination
node d such that it uses the minimum number of colors.

2.A.1. Proof of NP-hardness
We reduce a known NP-hard problem to the MCSL problem. The known NP-hard
problem in this case is the minimum set covering problem [19]. This problem is stated
as follows. Given a finite set S= �a1 ,a2 ,a3 , . . . ,an�, and a collection C= �C1 ,C2 , . . . ,Cm�
such that each element in C contains a subset of S, is there a minimum subset, C��C
such that every member of S belongs to at least one member of C�?

We construct a graph G for an arbitrary instance of the minimum set covering prob-
lem, such that the graph contains one path from s to d with the minimum number of
colors, if and only if C contains a minimum set cover C�. The following are the steps
for the graph construction:

Step 1. For every element ai in S, create a network node ai.

Step 2. For every subset Cj to which ai belongs, create a network link ai−1 ai of
color cj. For element a1, the link is sa1. Also create a single link between an and d with
color c0.

An example is given in Fig. 1. In this example, we construct graph G for a mini-
mum set covering problem S= �a1 ,a2 ,a3 ,a4�, C= �C1 ,C2 ,C3 ,C4C5�, C1= �a1 ,a2�, C2
= �a2 ,a3�, C3= �a1 ,a3�, C4�a3 ,a4�, C5= �a1 ,a4�.

It is apparent that if there is a minimum-color path from s to d, then the colors on
that path are mapped directly to a minimum set covering all the elements in S. Con-
versely, if there is a minimum set covering all the elements, then a minimum-color
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path can be derived by going through every node and selecting the link with the color
representing the set that covers the corresponding element.

Therefore, it is an NP-hard problem to find a single lightpath between two end
nodes with the minimum number of SRLGs. Subsequently the general problem is also
NP-hard where the failure probabilities of the SRLGs in the network may differ and
each fiber link may belong to multiple SRLGs.

2.A.2. Heuristic Algorithms
We introduce two simple greedy heuristics to solve the MCSL problem. We name the
first heuristic the single-lightpath color-reduction algorithm (SLCRA). The details are
as follows:

Step 1. Find a minimum-hop-count path p from s to d. Let the collection of all the
colors on p be set Cp= �c1 ,c2 , . . . ,ck�.

Step 2. Go through every color in Cp. Select the color such that removing all links of
that color results in a minimum-hop-count path with the minimum number of colors,
which is also less than �Cp�. Remove all links of the selected color from the network.

Step 3. Repeat steps 1 and 2 until the number of colors on the new minimum-hop-
count paths cannot be further reduced.

Step 1 of the algorithm may use one of the minimum-cost-path algorithms such as
Dijkstra’s algorithm by setting all link costs to 1. The running time in this step is
O�n log n� where n is the number of nodes [20]. The number of colors on this path is
used as the upper bound for lightpaths, which we find in the next step. Step 2 selects
one color at a time from the colors on the path obtained in step 1 (i.e., Cp) and tries to
find a new minimum-hop-count path after temporarily eliminating all links of that
particular color. After going through all the colors in Cp, we identify the color whose
elimination results in the minimum number of colors on the new path. The links of
that color are then permanently removed from the network graph before going to step
3. The worst-case running time of this step is O�mn log n�, where m is the total num-
ber of colors in the network. Step 3 repeats the previous two steps until no new path
can be found with fewer colors. In the worst case, the number of iterations is m, which
results in the total running time of O�m2n log n� for this entire algorithm.

We name the next heuristic the single-lightpath all-color-optimization algorithm
(SLACOA). The details are as follows:

Step 1. Initialize link cost to 1 on all links in the network.

Step 2. Find a minimum-cost lightpath p. Let the number of colors on p be �Cp�.
Step 3. Pick one color at a time, set the link cost to zero on all links of that color, and

find a new minimum-cost path. Repeat this procedure for all colors in the network, and
select the color that results in the path with the minimum number of colors, which is
also less than �Cp�. Keep the costs to zero on the links of that selected color.

Step 4. Repeat steps 2 and 3 until the number of colors on the minimum-cost paths
cannot be further reduced.

By setting all link costs to 1 in the first step, the minimum-cost path found in step
2 is effectively the minimum-hop-count path from the source s to the destination d.
The running time of step 2 is O�n log n�, where n is the number of nodes. The number
of colors on this path is used as the upper bound for lightpaths that we find in the
next step. Step 3 selects one color at a time from all colors in the network, sets the
link cost to zero on all links of that particular color, and finds a new path between s
and d. The intent is to determine whether we can reduce the number of colors on that
path if we make the links of a color more attractive by setting their cost to zero. After
going through all the colors, a color is identified when we find the new path with the

Fig. 1. Reduction of the minimum set covering problem to the MCSL problem.
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minimum number of colors. We then permanently set the cost of the links of that color
to zero before going to step 4. The running time of this step is O�mn log n�, where m
is the total number of colors in the network. Step 4 repeats the previous two steps
until no new path can be found with fewer colors. The number of iterations is m,
which results in a total running time of O�m2n log n� for this entire algorithm.

2.B. Parallel Lightpaths with Minimum Failure Probability
For the special case in which all SRLGs have uniform failure probability, each SRLG
is distinctly represented by a color. We refer to this instance of the parallel-lightpaths
problem as the minimum total-color disjoint-lightpaths (MTCDL) problem of finding
parallel lightpaths that use the minimum number of total colors. For the purpose of
NP-hardness analysis, if we prove the MTCDL problem to be NP-hard for networks
containing only single-color links, it will be straightforward to conclude that the
MTCDL problem is also NP-hard for networks possibly containing multicolor links,
since the former is a special of case of the latter.

A connection of parallel lightpaths uses at least two disjoint lightpaths. If more
than two lightpaths are used, the problem becomes even harder. Here we study the
two-path version of the MTCDL problem, which is defined as follows. Given network
G= �N ,L�, where N is the set of nodes and L is the set of fiber links, and given the set
of colors C= �c1 ,c2 ,c3 , . . . ,cK�, where K is the maximum number of colors in G, and
given the color cl�C on every link l�L, find two disjoint lightpaths from source node
s to destination node d such that the total number of colors on the two lightpaths is
minimal.

2.B.1. Proof of NP-hardness
There are two variations of the MTCDL problem based on the requirement of light-
path disjointness. In the first variation, the two lightpaths are node disjoint. In the
second variation, the two lightpaths are link disjoint. We reduce the minimum set cov-
ering problem to both variations of the problem to prove their NP-hardness. For the
minimum set covering problem, assume the given finite set S is �a1 ,a2 ,a3 , . . . ,an� and
the collection C is �C1 ,C2 , . . . ,Cm�.

Variation 1. MTCDL problem with node-disjoint requirement. We construct a graph
G for an arbitrary instance of the minimum set covering problem, such that the graph
contains two node-disjoint paths from s to d with the minimum total number of colors,
if and only if C contains a minimum set cover C�. The following are the steps for the
graph construction:

Step 1. For every element ai in S, create a network node ai.

Step 2. For every subset Cj to which ai belongs, create a network link ai−2ai of color
cj. For elements a1 and a2, the links are sa1 and sa2, respectively. Also create single
links an−1d and and with color c0.

An example is given in Fig. 2. In this example, we construct graph G for a mini-
mum set covering problem S= �a1 ,a2 ,a3 ,a4�, C= �C1 ,C2 ,C3 ,C4 ,C5�, C1= �a1 ,a2�, C2
= �a2 ,a3�, C3= �a1 ,a3�, C4= �a3 ,a4�, C5= �a1 ,a4�.

In the constructed graph G, an−1d and and are single links. Therefore any two node-
disjoint paths from s to d must have one path going along s–a1–a3– ¯ –d and the
other path going along s–a2–a4– ¯ –d. If two node-disjoint paths p1 and p2 have the

Fig. 2. Reduction of the minimum set covering problem to the MTCDL problem with
node-disjoint requirement.
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minimum total number of colors, since each color except for c0 is associated with a
member in C, the collections of all the colors on p1 and p2 map to a minimum subset
of C that covers all the elements. Conversely, if there is a minimum subset C��C that
covers all the elements, then for each node ai in G, there is at least one member Cj in
C� that contains ai, and we choose a link ai−2ai (or sa1, sa2) of the color cj. All the
links, together with the single links with color c0, form two node-disjoint paths from s
to d that have the minimum total number of colors.

Variation 2. MTCDL problem with link-disjoint requirement. We construct a graph
G for an arbitrary instance of the minimum set covering problem, such that the graph
contains two link-disjoint lightpaths from s to d with the minimum total number of
colors, if and only if C contains a minimum set cover C�. The following are the steps
for the graph construction:

Step 1. For every element ai in S, create network nodes ai and ui.

Step 2. For every element a2i in S (except for an if n is even, and an−1 if n is odd),
create a network node vi.

Step 3. For every subset Cj to which ai belongs, create a network link uiai of color cj.

Step 4. Create a single link su1, su2. If n is even, create single link a1v1, a2v1, v1u3,
v1u4 , . . ., a2i−1vi, a2ivi, viu2i+1, viu2i+2, . . ., an−3vn/2−1, an−2vn/2−1, vn/2−1un−1, vn/2−1un,
an−1d, and. If n is odd, create a single link a1v1, a2v1, v1u3, v1u4 , . . ., a2i−1vi, a2ivi,
viu2i+1, viu2i+2, . . ., an−2v�n−1�/2, an−1v�n−1�/2, v�n−1�/2un, v�n−1�/2d, and. All of the links are
of color c0.

An example is given in Fig. 3(a). In this example, we construct graph G for a mini-
mum set covering problem that has an even number of elements in S, i.e., S
= �a1 ,a2 ,a3 ,a4�, C= �C1 ,C2 ,C3 ,C4 ,C5�, C1= �a1 ,a2�, C2= �a2 ,a3�, C3= �a1 ,a3�, C4
= �a3 ,a4�, C5= �a1 ,a4�. Another example is given in Fig. 3(b). In this example, S has an
odd number of elements, i.e., S= �a1 ,a2 ,a3 ,a4 ,a5�, C= �C1 ,C2 ,C3 ,C4 ,C5�, C1
= �a1 ,a2 ,a5�, C2= �a2 ,a3�, C3= �a1 ,a3 ,a5�, C4= �a3 ,a4 ,a5�, C5= �a1 ,a4�.

If there are two link-disjoint paths p1 and p2 in the constructed graph G, every net-
work node ai must be on exactly one of the paths. If the two paths have the minimum
total number of colors, since each color except for c0 is associated with a member in C,
the collections of all the colors on p1 and p2 map to a minimum subset of C that cov-
ers all the elements. Conversely, if there is a minimum subset C��C that covers all
the elements, then for each node ai in G, there is at least one member Cj in C� that
contains ai, and we choose a link uiai of the color cj. All the links, together with the
single links with color c0, form two link-disjoint paths from s to d that have the mini-
mum total number of colors.

(a)

(b)

Fig. 3. Reduction of the minimum set covering problem to the MTCDL problem with
link-disjoint requirement. (a) With an even number of elements. (b) With an odd number
of elements.
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Therefore, the problem of finding two parallel lightpaths with the minimum total
number of SRLGs that are either link or node disjoint is NP-hard. Subsequently, more
general versions of the problem, such as the case in which the failure probabilities of
the SRLGs in the network may differ, the case in which the number of parallel light-
paths is more than two, or the case in which each fiber link may belong to multiple
SRLGs, are also NP-hard.

2.B.2. Heuristic Algorithms
Here we introduce two simple greedy heuristics to solve the MTCDL problem with the
link-disjoint requirement. Node disjointness is often not a concern due to built-in
redundancy in most optical switches. We name the first heuristic the disjoint-
lightpaths color-reduction algorithm (DLCRA). The details are as follows:

Step 1. Run Suurballe’s algorithm and find two link-disjoint paths p1 and p2 with
the minimum-total-hop-count. Assume the collection of all the colors on p1 and p2 is set
Cp= �c1 ,c2 , . . . ,ck�.

Step 2. Go through every color in Cp. Select the color such that, after the links of that
color are removed from the network, Suurballe’s algorithm yields two link-disjoint
minimum-total-hop-count paths with the minimum number of total colors, and the
number of colors is also less than �Cp�. Remove the links of the selected color.

Step 3. Repeat steps 1 and 2 until the number of colors on the link-disjoint
minimum-total-hop-count paths cannot be further reduced.

In step 1, we run Suurballe’s algorithm to find two link-disjoint lightpaths from the
source node s to the destination node d with running time O�n2 log n� [21]. The total
number of colors on the paths is used as the upper bound for lightpaths, which we find
in the next step. Step 2 selects one color at a time from the colors on the two paths
obtained in step 1 (i.e., Cp) and finds two new disjoint paths after temporarily elimi-
nating all links of that particular color from the network graph. After repeating this
procedure for all those colors, we identify the color whose elimination results in two
disjoint paths with the minimum total number of colors. The links of that color are
then permanently removed from the network graph before going to step 3. The worst-
case running time of this step is O�mn2 log n�. Step 3 repeats the previous two steps
until no new disjoint paths can be found with fewer total colors. In the worst case, the
number of iterations is m, which results in the total running time of O�m2n2 log n� for
this entire algorithm.

We name the next heuristic the disjoint-lightpaths all-color-optimization algorithm
(DLACOA). The details are as follows:

Step 1. Initialize link cost to 1 on all links in the network.

Step 2. Run Suurballe’s algorithm and find two link-disjoint paths. Assume that the
total number of colors on the two paths is �Cp�.

Step 3. Pick one color at a time, set the link cost to zero on all links of that color, then
run Suurballe’s algorithm and try to find two new link-disjoint paths. Repeat this for
all the colors in the network and select the one that results in two link-disjoint paths
with the minimum total number of colors that is also less than �Cp�. Keep the costs to
zero on the links of the selected color.

Step 4. Repeat steps 2 and 3 until the number of colors on the link-disjoint paths
cannot be further reduced.

By setting all link costs to 1 in the first step, the link-disjoint paths found in step 2
are effectively the minimum-total-hop-count lightpaths from the source s to the desti-
nation d. The running time of step 2 is O�n2 log n�, where n is the number of nodes.
The total number of colors on the two paths is used as the upper bound for lightpaths,
which we find in the next step. Step 3 selects one color at a time from all colors in the
network and tries to find two new disjoint paths after temporarily setting the link cost
to zero on all links of that particular color. The intent is to determine whether we can
reduce the total number of colors on the disjoint paths if we make the links of that
color more attractive by setting their cost to zero. After going through all the colors, a
color is identified if the two disjoint paths we found have the minimum total number
of colors. We then permanently set the cost of the links of that color to zero before
going to step 4. The running time of this step is O�mn2 log n�. Step 4 repeats the pre-
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vious two steps until no new disjoint paths can be found with fewer total colors. The
number of iterations is m, which results in the total running time of O�m2n2 log n� for
this entire algorithm.

2.C. Protected-Lightpaths with Minimum Failure Probability
For the special case in which all SRLGs have uniform failure probability, each SRLG
is distinctly represented by a color. This case of the lightpath protection problem is
referred to as the minimum overlapping-color disjoint-lightpaths (MOCDL) problem of
finding the working lightpath and the protection lightpath that have the minimum
number of overlapping colors. For the purpose of NP-hardness analysis, if we prove
the MOCDL problem to be NP-hard for networks containing only single-color links, it
will be straightforward to conclude that the MOCDL problem is also NP-hard for net-
works possibly containing multicolor links since the former is a special case of the lat-
ter.

The MOCDL problem is defined as follows. Given network G= �N ,L�, where N is the
set of nodes and L is the set of fiber links, and given the colors C= �c1 ,c2 ,c3 , . . . ,cK�,
where K is the maximum number of colors in G, and given the color cl�C on every
fiber link l�L, find two link-disjoint lightpaths from source node s to destination node
d such that they share the minimum number of overlapping colors.

2.C.1. Proof of NP-hardness
We reduce a known NP-hard problem to the MOCDL problem. The known NP-hard
problem in this case is the problem of finding two link-disjoint paths from source node
s to destination node d that are completely SRLG-disjoint [12,26]. We replace every
SRLG with a different color. If we were able to solve the MOCDL problem and find
two link-disjoint paths from s to d with the minimum overlapping colors, then the
paths should also be SRLG-disjoint if such paths exist in the network.

Therefore, the problem of finding a working lightpath and a protection lightpath
with the minimum number of common SRLGs is NP-hard. Subsequently, more gen-
eral versions of the problem, where the failure probabilities of the SRLGs in the net-
work may differ or each fiber link may belong to multiple SRLGs, are also NP-hard.

2.C.2. Heuristic Algorithms
We introduce three greedy heuristic algorithms for solving the MOCDL problem. We
name the first heuristic the minimum-color-first-lightpath algorithm. The details are
as follows:

Step 1. Run the SLACOA from Subsection 2.A.2 and find the first lightpath p1. Then
set the link cost back to 1 on all links in the network.

Step 2. Increase the cost of a link if the color of the link is on p1. The additional cost
is proportional to the number of links of that color on p1. Remove all links on p1.

Step 3. Run Dijkstra’s algorithm and find lightpath p2.

In the first step, we attempt to find a minimum-color single-lightpath from s to d.
Based on the discussion in Subsection 2.A.2, the running time of this step is
O�m2n log n� where n is the number of nodes and m is the total number of colors in
the network. In the second step, we increase the cost of all the links in the network
whose colors overlap with those on the first lightpath. The more links of a particular
color are on the first lightpath, the higher we increase the cost of all the links of that
color. The intent is to make those links less attractive when we execute step 3. We
also remove all the links on the first lightpath to ensure that the new path we find in
step 3 is link disjoint from the first path. The running time of step 3 is O�n log n�. So
the total running time for the entire algorithm is O�m2n log n�.

However, this algorithm may fail to find two link-disjoint lightpaths in networks
containing a trap topology [27,28]. An example of such a network is depicted in
Fig. 4. This network has only one wavelength. Each fiber link has a unique color. Once
the first lightpath from source node s to destination node d is found along s–a–b–d,
another link-disjoint lightpath cannot be found, even though two link-disjoint light-
paths do exist (s–e–b–d and s–a– f–d). Hence we propose the second heuristic for
the MOCDL problem and name it the joint-search minimum-overlapping-color algo-
rithm, which resolves the trap topology issue. The details are as follows:
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Step 1. Set link cost to 1 on all links in the network. Then run Suurballe’s algorithm
and find two link-disjoint lightpaths p1 and p2.

Step 2. Increase the cost of a link if the color of the link is on p1. The additional cost
is proportional to the number of links of that color on p1.

Step 3. Remove all links on p1. Run Dijkstra’s algorithm and find path p1�. Restore
links on p1. Set cost back to 1 on all links in the network.

Step 4. Increase the cost of a link if the color of the link is on p2. The additional cost
is proportional to the number of links of that color on p2.

Step 5. Remove all links on p2. Run Dijkstra’s algorithm and find path p2�.

Step 6. From the two pairs of disjoint paths p1 /p1� and p2 /p2�, select the pair that has
fewer overlapping colors as the result.

We start with Suurballe’s algorithm in step 1. Suurballe’s algorithm always finds
two link-disjoint lightpaths as long as they exist. Let the two paths be p1 and p2. The
running time of this step is O�n2 log n�, where n is the number of nodes in the net-
work. In steps 2 and 3, we try to find a new path p1� that is link disjoint from p1 and
is also less likely to share common colors with p1. The running time of this step is
O�n log n�. In steps 4 and 5, we try to find a new path p2� that is link disjoint from p2
and is also less likely to share common colors with p2. The running time of this step
is O�n log n�. From these two pairs, we select the pair of paths that has fewer overlap-
ping colors in step 6. The total running time for this entire algorithm is O�n2 log n�.

To establish an upper bound on the number of overlapping colors for the results
obtained from the two previous heuristics, we develop a simple two-step algorithm.
Details of this algorithm are as follows:

Step 1. Set link cost to 1 on all links in the network. Run Dijkstra’s algorithm and
find the shortest lightpath p1.

Step 2. Increase the cost of a link if the color of the link is on p1. The additional cost
is proportional to the number of links of that color on p1.

Step 3. Remove all links on p1. Run Dijkstra’s algorithm again and find the second
shortest path p2.

Paths p1 and p2 are link disjoint. Since the costs on the links of those colors on p1
are increased, it is expected that p1 and p2 share fewer colors. The running time of
this heuristic is the same as that of Dijkstra’s algorithm, which is O�n log n�.

2.D. Lightpath Ring with Minimum Failure Probabilities
For the special case in which all SRLGs have uniform failure probability, the
lightpath-ring reliability problem becomes the minimum total-color lightpath-ring
(MTCLR) problem of finding a lightpath ring that has the minimum number of total
colors on all the constituent lightpaths, and the minimum overlapping-color lightpath-
ring (MOCLR) problem of finding a lightpath ring that has the minimum number of
overlapping colors on all the constituent lightpaths. For the purpose of NP-hardness
analysis, if we prove the MTCLR problem and MOCLR problem NP-hard for networks
containing only single-color links, it will be straightforward to conclude that these
problems are also NP-hard for networks possibly containing multicolor links, since the
former are special cases of the latter.

Fig. 4. Example of a trap topology. The number next to each fiber link is the link cost.
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2.D.1. Lightpath Ring with Minimum Failure Probability on Any Constituent
Lightpaths
The MTCLR problem is defined as follows. Given network G= �N ,L�, where N is the
set of nodes and L is the set of fiber links, and given the colors C= �c1 ,c2 ,c3 , . . . ,cK�,
where K is the maximum number of colors in G, and given the color cl�C on every
fiber link l�L, find the lightpaths that connect node n1 ,n2 , . . . ,nm such that the total
number of colors on the lightpaths is minimized.

This problem is reducible to the Hamiltonian-cycle problem [19], which is a known
NP-hard problem, by the following steps:

Step 1. For the network graph G of a Hamiltonian-cycle problem, construct an iden-
tical network graph G�.

Step 2. Assign a unique color to every link in G�.

Hence, a minimum-color ring connecting all nodes in G� is reduced to a
Hamiltonian-cycle in G and this problem is proven NP-hard. Therefore, the problem of
finding a lightpath ring with the minimum number of total SRLGs when the SRLGs
have uniform failure probability is NP-hard. Subsequently the general problem is also
NP-hard where the failure probabilities of the SRLGs in the network may differ and
each fiber link may belong to multiple SRLGs. Due to the page limit, we have omitted
the heuristics for this problem. They will be studied in a separate paper.

2.D.2. Lightpath Ring with Minimum Probability of Simultaneous Failures of Multiple
Constituent Lightpaths
The MOCLR problem is defined as follows. Given network G= �N ,L�, where N is the
set of nodes and L is the set of fiber links, and given the colors C= �c1 ,c2 ,c3 , . . . ,cK�,
where K is the maximum number of colors in G, and given the color cl�C on every
fiber link l�L, find the lightpaths that connect node n1 ,n2 , . . . ,nm (can be in any
order) such that the number of overlapping colors on the lightpaths is minimized.

This problem is an NP-hard problem because it contains the MOCDL problem of
Subsection 2.C as a special case when m=2. Subsequently the general problem is also
NP-hard where the failure probabilities of the SRLGs in the network may differ and
each fiber link may belong to multiple SRLGs. Due to the page limit, we have omitted
the heuristics for this problem. They will be studied in a separate paper.

To summarize Section 2, we discussed five lightpath reliability problems with the
objectives of minimizing the failure probability of the connections. For each of the
problems, it was first shown that the problem is NP-hard for the special case in which
all SRLGs have uniform failure probability and each fiber link belongs to a single
SRLG. Then it becomes evident that the general problems are also NP-hard when the
SRLGs have different failure probabilities and each fiber link may belong to multiple
SRLGs. Heuristic solutions were developed for the first three problems.

3. Computer Simulations
We implement computer simulations to evaluate the heuristics on networks that are
randomly generated using LEDA [29]. The network size ranges from 10 to 40 nodes.
The nodal degree ranges from 2.6 to 3.0. Each fiber link is assumed to support an
unlimited number of lightpaths and is assumed to belong to any SRLG with equal
probability. The color intensity of the network ranges from 1 to 20. The network color
intensity is defined as the average number of links of the same color. When the color
intensity is 1, every network link has a different color and therefore belongs to a dif-
ferent SRLG. When the color intensity increases, more links have the same color, i.e.,
the links belong to the same SRLG. Subsequently more fiber links may fail simulta-
neously. If the color intensity is equal to the number of fiber links in a network, then
all links have the same color and they always fail simultaneously. In addition to the
heuristics, we also developed integer linear programming (ILP) formulations (Appen-
dix A) in order to obtain the optimal solutions using CPLEX [30]. We observed that the
difference between the amount of time required for the execution of the heuristics and
the amount of time required for solving the ILPs was significant. For example, using
an Intel-based personal computer, it took only a few minutes to execute each of the
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heuristics for 10,000 end-node pairs on a 40-node network, whereas it took several
hours to solve the ILPs for the same end-node pairs and network.

3.A. Simulations for the Minimum-Color Single-Lightpath Problem
We developed two heuristics for the MCSL problem, i.e., the SLCRA and the SLACOA.
For every randomly chosen pair of end nodes, we solved the ILP and used the heuris-
tics to obtain the minimum-color lightpath. We then compared the average numbers of
colors on all the lightpaths. To establish an upper bound for the results of the heuris-
tics, we also ran Dijkstra’s algorithm to obtain the minimum-hop-count paths for all
the end-node pairs. Two sets of the results are depicted in Figs. 5 and 6. Results on
other network topologies are similar.

We note that, as the nodal degree increases, the number of colors on the lightpath
decreases. The reason for this behavior is that an increase in nodal degree results in
a wider choice of available routes for each connection. Furthermore, an increase in
nodal degree reduces the average hop distance for each connection, thereby reducing
the number of colors. We also note that color intensity has an impact on the number
of colors on the lightpaths as well. When the color intensity is 1, all fiber links in the
network have a distinct color; hence, the number of colors for a given lightpath is sim-
ply the hop distance of that lightpath, and the average number of colors for each light-
path is simply the average hop distance in the network. As the color intensity
increases, the number of links with the same colors also increases. As a result, the
number of unique colors on the lightpaths decreases. The network topology and the
size of the network also affect the number of colors on the lightpath. Larger networks
with more nodes result in a higher average hop count for lightpaths; hence, for the
same nodal degree and color intensity, lightpaths in a network with more nodes will
have a greater number of colors than lightpaths in a network with fewer nodes.

3.B. Simulations for the Parallel-Lightpaths Problem
We developed two heuristics for the MTCDL problem, i.e., the DLCRA and the DLA-
COA. For every randomly chosen pair of end nodes, we solved the ILP and used the
heuristics to obtain two parallel lightpaths with a minimum total number of colors.
We then compared the average total numbers of colors on the lightpaths. To establish

Fig. 5. Average number of colors on lightpaths of all source–destination pairs versus
network color intensity. Network nodal degree=2.6.
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an upper bound for the results of the heuristics, we ran Suurballe’s algorithm on all
the end-node pairs. Two sets of the results are depicted in Figs. 7 and 8. Results on
other network topologies are similar.

Based on the simulation results, the parallel lightpaths obtained from DLACOA are
closest to the optimal ILP solutions in the average number of total colors on the light-
paths. This is because DLACOA selects optimal colors from all colors in the network
while DLCRA is restricted to the colors on the two initial lightpaths.

Fig. 7. Average total number of colors on two parallel lightpaths of all source–
destination pairs versus network color intensity. Network nodal degree=2.6.

Fig. 6. Average number of colors on lightpaths of all source–destination pairs versus
network color intensity. Network nodal degree=3.0.
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The network nodal degree, the color intensity, and the network size have similar
impacts on the number of total colors on the parallel lightpaths as in the simulations
in Subsection 3.A. Higher nodal degree, or greater color intensity, or smaller network
size all contribute to fewer total colors on the parallel lightpaths.

3.C. Simulations for the Protected-Lightpaths Problem
We developed two heuristics for the MOCDL problem, i.e., the minimum-color-first-
lightpath algorithm (MCFLA) and the joint-search minimum-overlapping-color algo-
rithm (JSMOCA). We used the simple two-step algorithm (STSA) to establish an
upper bound on the number of overlapping colors for the two heuristics.

For every randomly chosen pair of end nodes, we solved the ILP and used the heu-
ristics to obtain working and protection lightpaths with a minimum number of over-
lapping colors. We then compared the average numbers of overlapping colors on all
the lightpath pairs. Two sets of the results are depicted in Figs. 9 and 10. Results on
other network topologies are similar.

Based on the simulation results, the protected lightpaths obtained from the
JSMOCA are closest to the optimal ILP solutions in the average numbers of overlap-
ping colors on the lightpaths. This is because JSMOCA selects optimal colors from all
colors in the network while MCFLA is restricted to the colors on the initial pair of
lightpaths.

The number of overlapping colors is directly related to how susceptible the two
lightpaths are to a single SRLG failure event. As the color intensity increases, more
fiber links belong to the same SRLG and it is more likely that the two lightpaths
belong to a greater number of common SRLGs. Thus, the lightpaths become more sus-
ceptible to simultaneous failures.

4. Conclusions
In this paper we have discussed five lightpath reliability problems. For connections
between two end nodes, we discussed the single-lightpath problem, the parallel-
lightpaths problem, and the protected-lightpaths problem. For the interconnection of
three or more end nodes, we discussed the lightpath-ring problems. When all SRLGs
have uniform failure probability, these problems are formulated as minimum-color
lightpath problems (MCSL, MTCDL, and MOCDL) or minimum-color lightpath-ring
problems (MTCLR and MOCLR). We proved these problems NP-hard and extended

Fig. 8. Average total number of colors on two parallel lightpaths of all source–
destination pairs versus network color intensity. Network nodal degree=3.0.
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the conclusions to the general problems where the SRLGs may have different failure
probabilities and each fiber link may belong to multiple SRLGs. We proposed various
heuristics that execute in polynomial time and that may be suitable for large-scale
networks. Despite the simplicity of the heuristics, computer simulations demonstrated
that the heuristics yield solutions that are close to optimal.

From the simulations, we also observed that various factors affect the number of
colors (i.e., SRLGs) on the lightpaths, including the nodal degree, the color intensity,
and the number of nodes in the network. An increase in the nodal degree helps reduce
the number of colors on the lightpaths for the problems that attempt to minimize the
total number of colors on the lightpaths (MCSL, MTCDL). This is due to the fact that
there is a greater choice of routes for the lightpaths. The heuristic algorithm SLACOA
performs the best for reducing the total number of colors on a single lightpath
(MCSL), whereas DLACOA is the most successful with the parallel-lightpaths prob-
lem (MTCDL).

The color intensity also affects the number of colors on the lightpaths. An increase
in the color intensity increases the number of overlapping colors between a working

Fig. 9. Average number of overlapping colors on protected lightpaths of all source–
destination pairs versus network color intensity on a 20-node network. Nodal degree
=2.6.

Fig. 10. Average number of overlapping colors on protected lightpaths of all source–
destination pairs versus network color intensity on a 40-node network. Nodal degree
=3.0.
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lightpath and its protection lightpath, thereby making both lightpaths more suscep-
tible to simultaneous failures (MOCDL). JSMOCA reduces the number of overlapping
colors and is reasonably close to the ILP’s optimal solution.

While the emphasis of this paper is to identify the problems and to prove their
NP-hardness, future work may involve the development of approximation algorithms
for each of the problems. For instance, the minimum set covering problem is reducible
to the MCSL problem with polynomial complexity as shown in Subsection 2.A. Based
on the significant number of studies already done on the approximation algorithms for
the minimum set covering problem [19,31], similar work can be extended for the
MCSL problem.

Another interesting topic for future work would be to consider the multiple-
lightpath problems (MTCDL and MOCDL) without the link-disjoint constraint. In this
case, the lightpaths may share a common fiber link if the failure probability of that
link is low.

Appendix A
All ILP formulations developed below are for static traffic. The problem with a single
connection is a special case when there is only one source–destination pair in �.

1. ILP Formulation for the Minimum-Color Single-Lightpath Problem
The following are given as inputs to the problem:

• N: number of nodes in the network.
• L: number of links in the network.
• colorc

ij: 1 if link ij has color c; 0 otherwise.
• �= �s1d1 ,s2d2 , . . . ,smdm , . . .sMdM�, M�m�1: All the source–destination pairs of

the connection requests.

The ILP solves for the following variables:

• �m
ij : 1 if link ij is used on the lightpath between source–destination pair smdm in

�; 0 otherwise.
• �m

c : 1 if color c is on the lightpath between source–destination pair smdm in �; 0
otherwise.

Objective: minimize the average number of colors on the lightpaths,

��
m

�
c

�m
c �	M. �A1�

Constraints: Eqs. (A2)–(A4) describe the flow constraints, i.e., each lightpath goes
through a fiber link at most once:

�
j

�m
xj = 1, where x = sm, ∀ m, �A2�

�
i

�m
ik − �

j
�m

kj = 0, ∀ k � sm,dm, ∀ m, �A3�

�
j

�m
jy = 1, where y = dm, ∀ m. �A4�

Inequalities (A5) and (A6) describe the upper and lower bounds of the number of
occurrences of a particular color on a lightpath:

�m
c � �

i,j
�colorc

ij � �m
ij �, ∀ m ∀ c, �A5�

L�m
c � �

i,j
�colorc

ij � �m
ij �, ∀ m ∀ c. �A6�
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2. ILP Formulation for the Parallel-Lightpaths Problem
The following are given as inputs to the problem:

• N: number of nodes in the network.
• L: number of links in the network.
• colorc

ij: 1 if link ij is of color c; 0 otherwise.
• �= �s1d1 ,s2d2 , . . . ,smdm , . . .sMdM�, M�m�1: All the source–destination pairs of

the connection requests.

The ILP solves for the following variables:

• �m
ij : 1 if link ij is used on lightpath p1 between source–destination pair smdm in �;

0 otherwise.
• �m

ij : 1 if link ij is used on lightpath p2 between source–destination pair smdm in �;
0 otherwise.

• �1m
c : 1 if color c is on lightpath p1 between source–destination pair smdm in �; 0

otherwise.
• �2m

c : 1 if color c is on lightpath p2 between source–destination pair smdm in �; 0
otherwise.

• overlapm
c : 1 if color c is on both lightpaths p1 and p2 between source–destination

pair smdm in �; 0 otherwise.

Objective: minimize the average total number of colors on the parallel-lightpaths,

��
m

�
c

��1m
c + �2m

c − overlapm
c �� 	M. �A7�

Constraints: Eqs. (A8)–(A13) describe the flow constraints for the two parallel light-
paths, i.e., each lightpath goes through a fiber link at most once:

�
j

�m
xj = 1, where x = sm, ∀ m, �A8�

�
i

�m
ik − �

j
�m

kj = 0, ∀ k � sm,dm, ∀ m, �A9�

�
j

�m
jy = 1, where y = dm, ∀ m, �A10�

�
j

�m
xj = 1, where x = sm, ∀ m, �A11�

�
i

�m
ik − �

j
�m

kj = 0, ∀ k � sm,dm, ∀ m, �A12�

�
j

�m
jy = 1, where y = dm, ∀ m. �A13�

Inequalities (A14)–(A17) describe the upper and lower bounds of the number of
occurrences of a particular color on each of the two lightpaths:

�1m
c � �

i,j
�colorc

ij � �m
ij �, ∀ m ∀ c, �A14�

L�1m
c � �

i,j
�colorc

ij � �m
ij �, ∀ m ∀ c, �A15�

�2m
c � �

i,j
�colorc

ij � �m
ij �, ∀ m ∀ c, �A16�

L�2m
c � �

i,j
�colorc

ij � �m
ij �, ∀ m ∀ c. �A17�
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Inequalitiy (A18) is the overlapping-color constraint that determines the set of over-
lapping colors of the parallel lightpaths, i.e., overlapm

c =1 iff �1m
c =�2m

c =1 and
overlapm

c =0 iff �1m
c ��2m

c ,

0 � 1 − �1m
c + 1 − �2m

c + 2overlapm
c � 2, ∀ m ∀ c. �A18�

Inequalities (A19) and (A20) are the link-disjoint constraint for the two lightpaths:

�m
jj + �m

ij � 1, ∀ i,j, ∀ m, �A19�

�m
jj + �m

ji � 1, ∀ i,j, ∀ m. �A20�

3. ILP Formulation for the Protected-Lightpaths Problem
The following are given as inputs to the problem:

• N: number of nodes in the network.
• L: number of links in the network.
• colorc

ij: 1 if link ij is of color c; 0 otherwise.
• �= �s1d1 ,s2d2 , . . . ,smdm , . . .sMdM�, M�m�1: all the source–destination pairs of

the connection requests.

The ILP solves for the following variables:

• �m
ij : 1 if link ij is used on lightpath p1 between source–destination pair smdm in �;

0 otherwise.
• �m

ij : 1 if link ij is used on lightpath p2 between source–destination pair smdm in �;
0 otherwise.

• �1m
c : 1 if color c is on lightpath p1 between source–destination pair smdm in �; 0

otherwise.
• �2m

c : 1 if color c is on lightpath p2 between source–destination pair smdm in �; 0
otherwise.

• overlapm
c : 1 if color c is on both p1 and p2 between source–destination pair smdm

in �; 0 otherwise.

Objective: minimize the average number of overlapping colors on the working-
protection-lightpaths pairs,

��
m

�
c

overlapm
c �	M. �A21�

Constraints: same as those in Eqs. (A8)–(A13) and inequalities (A14)–(A20).
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