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INDEPENDENCE, RADIUS AND HAMILTONIAN PATHS 

ERMELINDA DELAVIÑA, RYAN PEPPER AND BILL WALLER 

Abstract. We show that if the radius of a simple, connected graph equals its indepen-
dence number, then the graph contains a Hamiltonian path. This result was conjectured 
by the computer program Graÿti.pc, using a new conjecture-generating strategy called 
Sophie. We also mention several other suÿcient conditions for Hamiltonian paths that 
were conjectured by Graÿti.pc, but which are currently open, so far as we know. 

Introduction and Key Definitions 

We limit our discussion to graphs that are simple, connected and fnite of order n. 
Although we often identify a graph G with its set of vertices, in cases where we need 
to be explicit we write V (G). We let = (G) denote the independence number of G; 
this is the maximum order of an induced discrete subgraph of G. The eccentricity of a 
vertex v of G is the maximum of the distances from v to the other vertices of G. The 
minimum eccentricity taken over all vertices of G is called the radius of G and is denoted 
by r = r(G). The path covering number of G is denoted by ˆ = ˆ(G) and is the minimum 
number of vertex-disjoint paths needed to cover the vertices of G (e.g. when ˆ = 1,  G 
contains a Hamiltonian path). We defne the path number of G, denoted by p = p(G), 
as the maximum order of an induced path in the graph. One can make an analogous 
defnition for the bipartite number of G, denoted by b = b(G). Other more specialized 
defnitions will be introduced immediately prior to their frst appearance. Standard graph 
theoretical terms not defned in this paper can be found in [14]. 

In a classical 1986 paper by P. Erdös, M. Saks, and V. Sós [8], using a proof credited to 
F. Chung, it is shown that every graph of radius r has an induced path of order at least 
2r − 1. We state this result as Theorem 1, which is sometimes called the Induced Path 
Theorem [11]. 

Theorem 1. [8] Let G be a graph. Then 

p � 2r − 1. 
Two immediate corollaries of Theorem 1 are summarized in the following Theorem 

2. Only the second inequality requires a proof; there are various other proofs of this 
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inequality besides the one given here. The best known of these inequalities is the frst 
one: the independence number of a graph is at least as large as its radius. This result 
was proven independently at roughly the same time as Theorem 1 by S. Fajtlowicz and 
B. Waller [10], motivated as an early conjecture of the computer program Graÿti [9], as 
well as by O. Favaron, M. Mahéo and J-F. Saclé [12]. Neither of the these independent 
proofs is similar to Chung’s proof of the Induced Path Theorem. 

Theorem 2. Let G be a graph. Then � r and b � 2r. 

Proof. The frst inequality is an obvious consequence of Theorem 1. To show b � 2r, 
suppose G is a counterexample. Let P be an induced path of order at least 2r − 1. Now 
P must have order exactly 2r− 1 and b = 2r− 1, or we are fnished. Color the vertices of 
P red and green. So the endpoints of P have the same color. But each vertex v outside 
of P must be adjacent to both a red and green vertex of P , or  b � 2r and G is not a 
counterexample. Thus v must be adjacent to an interior vertex of P . But this implies the 
radius of G is at most r − 1, again a contradiction. � 

Although it is easy to fnd graphs (other than cliques) for which these two inequalities 
are best possible, the problem of characterizing the case of equality for each lower bound 
has apparently remained unresolved. Of particular interest has been characterizing those 
graphs where = r (see [11], [12]). The main goal of this paper is therefore to prove the 
following Theorem 3, which sheds some light on the structure of these extremal graphs as 
well as supplying a new suÿcient condition for a graph to contain a Hamiltonian path. 
We defer the proof of this theorem to the next section. 

Theorem 3. (Main Theorem) Let G be a graph such that = r. Then G contains a 
Hamiltonian path. 

One interesting aspect of this theorem is that it applies to various families of graphs, 
such as even paths and cycles, for which many of the classical suÿcient conditions for 
Hamiltonian paths do not apply. Let us discuss the genesis of this theorem. Graÿti, 
a computer program that makes conjectures, was written by S. Fajtlowicz and dates 
from the mid-1980’s. Graÿti.pc, a program that makes graph-theoretical conjectures 
utilizing conjecture-making strategies similar to those found in Graÿti, was written by 
E. DeLaViña. The operation of Graÿti.pc and its similarities to Graÿti are described in 
[2] and [3]; its conjectures can be found in [5]. A numbered, annotated listing of several 
hundred of Graÿti’s conjectures can be found in [9]. Both Graÿti and Graÿti.pc have 
correctly conjectured a number of new bounds for several well studied graph invariants; 
bibliographical information on resulting papers can be found in [4]. 

Graÿti.pc employs two main strategies for generating conjectures. The frst of these 
is known as the “Dalmatian heuristic” (due to Fajtlowicz) and generates necessary con-
ditions for a particular class of graphs P , as chosen by the user (frequently, this class is 
merely all simple, connected graphs). Dalmatian conjectures are of the form 
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If a graph belongs to class P , then “fxed expression � expression 2” 

where the expressions on the left and right are composed of graph invariants and constants 
combined by algebraic operations. The fxed expression on the left is also chosen by the 
user, and may consist of just a single graph invariant. At present, Graÿti.pc can compute 
about 500 invariants and 25 operators. Graÿti.pc generates expressions of 35 various 
types (as determined by the arity of the operators in the expression). Expressions may 
contain several terms. Di�erent expressions are generated by varying terms and operators 
over the invariant set and available operators of the appropriate arity, respectively. 

Recently, the authors have been experimenting with a new strategy for generating 
conjectures, called the “Sophie heuristic” (due to DeLaViña and Waller). Graÿti.pc’s 
Sophie heuristic generates suÿcient conditions for a particular class of graphs P , as chosen 
by the user. Sophie conjectures are of the form 

If “expression 1 � expression 2” for a graph, then the graph belongs to class P . 

Sophie generates conjectures by utilizing two databases of graphs and their computed 
invariants. The background database comprises about two million small connected graphs 
(most generated by B. McKay’s geng program), and the top database is a small subset 
of the background database. Let P be a class of graphs. The target set is the collection 
of graphs in the top database that belong to class P . The cover set C of a relation 
between expressions is the set of graphs in the top database for which the relation is 
true. The Sophie heuristic begins by generating pairs of di�erent expressions by varying 
terms and operators over the invariant set and available operators of the appropriate arity, 
respectively. Then the cover sets of each of three possible relations (utilizing �,�, and 
=) between a pair of expressions is determined. If the cover set of a relation is contained 
in the target set, then the relation is considered to be the hypothesis of a candidate 
conjecture, whose conclusion is that a graph satisfying the hypothesis belongs to class 
P . A candidate conjecture is accepted if its cover set includes graphs not included in 
any of the cover sets of previously accepted conjectures, and if it is plausible versus the 
background database. Sophie’s goal is to generate a “minimal” list of conjectures that 
“covers” all graphs in the target set. If this goal is met, then Sophie tries to extend (i.e. 
add graphs to) the target set and top database, and continues toward the goal. 

As one of our initial test beds for Sophie, we chose the class P of simple, connected 
graphs containing a Hamiltonian path. This test resulted in a collection of 34 conjectures, 
several of which have now been either proven or refuted. We will mention a few of 
our favorite open conjectures from this list in the last section. The full list of Sophie 
conjectures is available at [5]. The conjecture that resulted in Theorem 3 was contained 
on an early list of Sophie conjectures, but eventually was replaced by the following more 
general conjecture. 

Conjecture 1. (Graÿti.pc 196) Let  G be a graph. If b = 2r, then G contains a Hamil-
tonian path. 

This conjecture is a generalization of Theorem 3 because since � b/2, Theorem 2 
implies if = r, then b = 2r as well. Some time after Sophie generated these conjectures, 
we noticed that Theorem 3 is also a corollary of the following open conjecture of Graÿti. 
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Figure 1. The 7-ciliate C(8, 3) 

Conjecture 2. (Graÿti [7]) Let  G be a graph. Then 

ˆ − 1 � r + . 
2 

There exist at least two di�erent generalizations of Theorem 1, provided independently 
by Fajtlowicz in ([11], Theorem 2), and G. Bacsó and Z. Tuza in ([1], Theorem 1). The 
1988 result of Fajtlowicz plays a key role in the proof of Theorem 3. Fajtlowicz proves this 
result in the context of characterizing radius-critical graphs, which are graphs in which 
every proper induced connected subgraph has radius strictly less than the parent graph. 
Let P (n) and C(n) denote the path on n vertices and the cycle on n vertices, respectively. 
Let C(p, q) denote the graph obtained from p disjoint copies of P (q+1) by linking together 
one endpoint of each path in a cycle C(p). For 1 � t � r, the graphs C(2t, r − t) have  
radius r and are referred to as r-ciliates. Ciliates include the even paths P (2r) and even 
cycles C(2r) as the extreme cases t = 1 and t = r (assuming C(2) = P (2)). Figure 1 
depicts the 7-ciliate C(8, 3) = C(2 · 4, 7 − 4). 

Theorem 4. (Fajtlowicz [11]) Let  G be a graph with r � 1. Then G contains an r-ciliate 
as an induced subgraph. 

Finally, another result of Fajtlowicz (also conjectured by Graÿti) will allow us to some-
what simplify the proof of Theorem 3. 

Theorem 5. (Fajtlowicz [9]) Let G be a graph with = 2. Then G contains a Hamiltonian 
path. 

Proof of Main Theorem 

Theorem 3. Let G be a graph such that = r. Then G contains a Hamiltonian path. 

Proof. The case = r = 1 is trivial. Thus, Theorem 5 implies we can limit our attention 
to the case = r � 3. (We should note that Fajtlowicz has communicated to us a short, 
independent proof of the case = r = 3.) The structure of r-ciliates and Theorem 4 
imply the following Lemma 1. Lemma proofs are given in the next section. 

Lemma 1. Let G be a graph with r � 1 such that = r. Then G contains either P (2r) 
or C(2r) as an induced subgraph. Moreover, if we let H denote an induced P (2r) or C(2r) 
subgraph, then every vertex of G is either contained in H or is adjacent to H. 

Lemma 2. Let G be a graph such that = r � 1. Then for each vertex v such that 
v 2 V (G) − V (H), v is adjacent to at least two vertices in H. 
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Figure 2. = r = 3  

Figure 3. = r = 4  

Enumerate the vertices of H as h1, h2, h3, . . . , h2r; clockwise if H is a cycle, and left-
to-right if H is a path. Let hi and hj be two distinct vertices on H. Then we defne 
�(hi, hj ) = min{|j − i|, 2r − |j − i|}. (Note that if H is a cycle, then �(hi, hj ) is just the 
shortest-path distance between hi and hj with respect to H. If  H is a path, imagine the 
cycle F formed from H by joining h1 and h2r. Then �(hi, hj ) is just the shortest-path 
distance between hi and hj with respect to F .) Moreover, we say that hi and hj are 
consecutive provided �(hi, hj ) = 1. (Hence, h1 and h2r are consecutive.) Now suppose v 
is a vertex such that v 2 V (G) − V (H). Then we let �(v) = max{�(hi, hj ) : v is adjacent 
to hi, hj }. We have that �(v) is well-defned by Lemma 2. 

In addition to assuming = r, if we assume r � 5, then we can show the following 
Lemma 3. 

Lemma 3. Let G be a graph with r � 5 such that = r. If  H = C(2r), then for 
each vertex v such that v 2 V (G) − V (H), v is adjacent to exactly two or exactly three 
consecutive vertices in H. 

The reader may be curious about the necessity of the condition r � 5 in the statement 
of Lemma 3. The graphs in Figures 2 and 3 show that for small values of r, Lemma 3 
may not hold. Each graph contains an induced C(2r) subgraph and a vertex v not on 
this cycle adjacent to four vertices of the cycle. 

Lemma 4. Let G be a graph with 3 � r � 4 such that = r. Then either: 
1) G contains H = C(2r) as an induced subgraph, and for each vertex v such that 

v 2 V (G)− V (H), v is adjacent to exactly two or exactly three consecutive vertices in H, 
or 

2) G contains P (2r) as an induced subgraph. 

The following sequence of lemmas and defnitions culminates in Lemma 14, which then 
allows us to state an algorithm for constructing a Hamiltonian path in a graph G where 

= r � 3. Lemmas 11, 12, and 13 are analogous to Lemma 3 in the case when H = P (2r). 
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Figure 4. Lemma 7 

Figure 5. Lemma 8 

Unlike when r � 5 and H = C(2r), vertices not in H may be adjacent to up to four 
vertices in H when H = P (2r). Certain complications arise when r = 3, or when there 
exist vertices not in H that are adjacent to the endpoints of H. These complications 
necessitate a number of mostly technical lemmas, in particular Lemmas 6 through 9. 

Lemma 5. Let G be a graph with r � 3 such that = r. If  H = P (2r) and v is a vertex 
such that v 2 V (G) − V (H), then 1 � �(v) � 3. 

Lemma 6. Let G be a graph with r � 3 such that = r. Suppose H = P (2r). Let  v 
be a vertex such that v 2 V (G) − V (H). Then the neighbors of v in H must be a subset 
of four consecutive vertices. Moreover, if r � 4 and �(v) = 3, the neighbors of v in H 
cannot be a subset of {h1, h2r−2, h2r−1, h2r}, {h1, h2, h2r−1, h2r}, or  {h1, h2, h3, h2r}. 

Lemma 7. Let G be a graph with = r = 3. Suppose H = P (6). Let  U ˆ V (G)− V (H) 
be a collection of vertices such that for every u 2 U , �(u) = 3  and the neighbors of u in 
H are a subset of {h1, h2, h5, h6}. Then U must induce a clique in G, and each vertex 
u 2 U must be adjacent to each of the vertices {h1, h2, h5, h6}. Moreover, if there exists a 
vertex v 2 V (G)− V (H) adjacent to h6 such that the neighbors of v in H are a subset of 
{h1, h2, h6}, then v is adjacent to each vertex of U . (See Figure 4.) 

Lemma 8. Let G be a graph with = r = 3. Suppose H = P (6). Let  U ˆ V (G)− V (H) 
be a collection of vertices such that for every u 2 U , �(u) = 3  and the neighbors of u in 
H are a subset of {h1, h4, h5, h6}. Then U must induce a clique in G, and each vertex 
u 2 U must be adjacent to exactly the set {h1, h4, h5} in H. Moreover, there exists a 
vertex v 2 V (G) − V (H) adjacent to exactly the set {h1, h5, h6} in H, and each such 
vertex v is adjacent to each vertex of U . (See Figure 5.) 
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Figure 6. Lemma 9 

Figure 7. Lemma 10.1) 

Lemma 9. Let G be a graph with = r = 3. Suppose H = P (6). Let  U ˆ V (G)− V (H) 
be a collection of vertices such that for every u 2 U , �(u) = 3  and the neighbors of u in 
H are a subset of {h1, h2, h3, h6}. Then U must induce a clique in G, and each vertex 
u 2 U must be adjacent to exactly the set {h2, h3, h6} in H. Moreover, there exists a 
vertex v 2 V (G) − V (H) adjacent to exactly the set {h1, h2, h6} in H, and each such 
vertex v is adjacent to each vertex of U . (See Figure 6.) 

Lemma 10. Let G be a graph with r � 3 such that = r. Assume H = P (2r). Suppose 
U is a collection of vertices such that U ˆ V (G) − V (H) and k = min{j : u 2 U and 
u is adjacent to hj }. Moreover, suppose for every u 2 U that u is adjacent to hk, and 
�(v) = 3  for some v 2 U . Then: 

1) If 2 � k � 2r−4, then there exists a vertex z 2 V (G)−V (H) such that z is adjacent 
to both h1 and h2r. Furthermore, z is adjacent to only these two vertices in H, and z is 
not adjacent to any vertex u 2 U . (See Figure 7.) 

2) If k = 1  and for every vertex u 2 U , u is adjacent to h4 and the neighbors of u in 
H are a subset of {h1, h2, h3, h4}, then there exists a vertex z 2 V (G)− V (H) such that z 
is adjacent to h1 and at least one of h2 and h2r. Furthermore, z is adjacent to only these 
vertices in H, and z is not adjacent to any vertex u 2 U . (See Figure 8.) 

3) If k = 2r − 3 and for every vertex u 2 U , the neighbors of u in H are a subset 
of {h2r−3, h2r−2, h2r−1, h2r}, then there exists a vertex z 2 V (G) − V (H) such that z is 
adjacent to h2r and at least one of h1 or h2r−1. Furthermore, z is adjacent to only these 
vertices in H, and z is not adjacent to any vertex u 2 U . (See Figure 9.) 

Lemma 11. Let G be a graph with r � 3 such that = r. Suppose H = P (2r). Moreover, 
suppose v is a vertex such that v 2 V (G) − V (H) and the neighbors of v include neither 
h1 nor h2r. Then v is adjacent to exactly two, exactly three, or exactly four consecutive 
vertices in H. 
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Figure 8. Lemma 10.2) 

Figure 9. Lemma 10.3) 

Lemma 12. Let G be a graph with r � 3 such that = r. Suppose H = P (2r). Moreover, 
suppose v is a vertex such that v 2 V (G)− V (H) and the neighbors of v include h1. Then 
either: 

1) v is adjacent to exactly two or exactly three consecutive vertices in H; or  
2) v is adjacent to exactly h1, h2, h3, and h4 in H; or  
3) v is adjacent to h1, h3, and h4; or  
4) r = 3  and v is adjacent to exactly h1, h2, h5, and h6 in H; or  
5) r = 3  and v is adjacent to exactly h1, h4, and h5 in H. 

Lemma 13. Let G be a graph with r � 3 such that = r. Suppose H = P (2r). Moreover, 
suppose v is a vertex such that v 2 V (G)−V (H) and the neighbors of v include h2r. Then 
either: 

1) v is adjacent to exactly two or exactly three consecutive vertices in H; or  
2) v is adjacent to exactly h2r−3, h2r−2, h2r−1, and h2r in H; or  
3) v is adjacent to exactly h2r−3, h2r−2, and h2r in H; or  
4) r = 3  and v is adjacent to exactly h1, h2, h5, and h6 in H; or  
5) r = 3  and v is adjacent to exactly h2, h3, and h6 in H. 

Let G be a graph with r � 1. Suppose G contains an induced subgraph H such that H = 
P (2r) or  H = C(2r). Suppose u and v are a pair of vertices where u, v 2 V (G) − V (H). 
Let k be the smallest integer such that u is adjacent to hk and k 0 be the smallest integer 
such that v is adjacent to hk 0 . Then u and v are said to be degenerate (with respect to 
H) if either: 

a) the union of their neighbors in H is three or less consecutive vertices; or 
b) k = k 0 , and the union of their neighbors in H is four or less consecutive vertices 

including neither h1 nor h2r; or  
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c) k = k 0 = 1, both are adjacent to h4, and the union of their neighbors in H is a 
subset of {h1, h2, h3, h4}; or  

d) k = k 0 = 2r − 3, either �(u) = 3  or  �(v) = 3, and the union of their neighbors in H 
is a subset of {h2r−3, h2r−2, h2r−1, h2r}; or  

e) their neighbors in H are identical. 

Lemma 14. Let G be a graph with r � 3 such that = r. Then there exists a subgraph 
H of G such that either H = P (2r) or H = C(2r), and if u, v 2 V (G) − V (H) is a pair 
of degenerate vertices with respect to H, u is adjacent to v. 

We can now complete the proof of the main theorem. Let us repeat the choice of 
the induced subgraph H as described in the proof of Lemma 14 (below). If r � 5 and 
G contains an induced C(2r) subgraph, let H be this subgraph. Then G and H satisfy 
Lemma 3. If r � 5 and G does not contain an induced C(2r) subgraph, let H be the 
induced P (2r) subgraph implied by Lemma 1. If 3 � r � 4 and G contains an induced 
C(2r) subgraph that satisfes Lemma 4, let H be this subgraph. If 3 � r � 4 and G does 
not contain an induced C(2r) subgraph that satisfes Lemma 4, let H be the induced 
P (2r) subgraph implied by Lemma 4. 

For each k, 1 � k � 2r − 3, let Xk denote the set of vertices in V (G) − V (H) that are 
adjacent to hk but whose neighbors in H are a subset of {hk, hk+1, hk+2, hk+3}. Moreover, 
let X2r−2 denote the set of vertices in V (G)− V (H) that are adjacent to h2r−2 but whose 
neighbors in H are a subset of {h2r−2, h2r−1, h2r}; let X2r−1 denote the set of vertices 
in V (G) − V (H) that are adjacent to h2r−1 but whose neighbors in H are a subset of 
{h2r−1, h2r, h1}; and let X2r denote the set of vertices in V (G) − V (H) that are adjacent 
to h2r but whose neighbors in H are a subset of {h2r, h1, h2}. There are three exceptions 
to this scheme, which are necessary only when r = 3 and H = P (6). We also include in 
X2r−1 those vertices in V (G) − V (H) that are adjacent to exactly h2r−2, h2r−1, and h1 

in H. Likewise, we include in X2r those vertices in V (G) − V (H) that are adjacent to 
exactly h2r−1, h2r, h1, and h2 in H, as well as those vertices that are adjacent to exactly 
h2, h3, and h2r in H. By Lemmas 3, 4, 11, 12, and 13, each vertex of V (G) − V (H) is  
contained in precisely one of the sets Xj . By Lemma 14, each set Xj induces a clique 
in G, except possibly: X1 when H = P (2r); X2r−1 when r = 3 and H = P (6); and X2r 

when r = 3 and H = P (6). We inductively construct a Hamiltonian path P . 
Step 1) Consider frst the case H = C(2r). Let h1 be the initial vertex of P . If  X1 is 

empty, then we add h2 to P and proceed. Otherwise, assume there exists a vertex v 2 X1, 
which by defnition must be adjacent to h1. We next add v to P , and because X1 induces 
a clique in G in this case, we can in turn add each additional vertex of X1 to P as well. 
Assume u is the last vertex of X1 added to P in this fashion. By our choice of H and 
Lemma 3, u must be adjacent to h2. Hence we can add h2 to P and continue. 

Next, consider the case H = P (2r). If X1 is empty, let h1 be the initial vertex of 
P . Then we add h2 to P and proceed. Otherwise, let Y be those vertices y 2 X1 such 
that �(y) = 3, and let Z be those vertices z 2 X1 such that �(z) � 2. By Lemma 12, 
Y [ Z = X1. If  Y is empty, let h1 be the initial vertex of P . Otherwise, assume there 
exists a vertex y 2 Y . Let y be the initial vertex of P , and because Y induces a clique in 
G by Lemma 14, we can in turn add each additional vertex of Y to P as well. Assume u 
is the last vertex of Y added to P in this fashion. Since Y ˆ X1, u must be adjacent to 



h1. Hence we can now add h1 to P . In any event, h1 is added to P . Next, if Z is empty, 
then we add h2 to P and proceed. Otherwise, assume there exists a vertex z 2 Z ˆ X1. 
Add z to P , and because Z induces a clique in G by Lemma 14, we can in turn add each 
additional vertex of Z to P as well. Assume w is the last vertex of Z added to P in this 
fashion. Since �(w) � 2, w must be adjacent to h2 by Lemma 12. Hence we can add h2 

to P and continue. 
Step 2) Now suppose we have constructed a path P such that the terminal vertex of 

P is hj (1 < j < 2r − 1); each vertex h1, h2, . . . , hj−1 is contained in P ; and each vertex 
of X1 [ X2 [ X3 [ . . . [ Xj−1 is contained in P . Moreover, suppose these are the only 
vertices contained in P . If  Xj is empty, then we add hj+1 to P and continue. Otherwise, 
assume there exists a vertex v 2 Xj , which by defnition must be adjacent to hj . We next 
add v to P (v /2 X1 [ X2 [ X3 [ . . .[ Xj−1 assures that v is not already contained on P ). 
Because Xj induces a clique in G, we can in turn add each additional vertex of Xj to P . 
Assume u is the last vertex of Xj added to P in this fashion. By Lemmas 3, 4, 11, and 
13, u must be adjacent to hj+1. Hence we can add hj+1 to P and continue. 

Step 3) Now suppose we have constructed a path P such that the terminal vertex of P 
is h2r−1; each vertex h1, h2, . . . , h2r−2 is contained in P ; and each vertex of X1 [ X2 [ X3 [ 
. . . [ X2r−2 is contained in P . Moreover, suppose these are the only vertices contained 
in P . If  X2r−1 is empty, then we add h2r to P and continue. Otherwise, assume there 
exists a vertex v 2 X2r−1, which by defnition must be adjacent to h2r−1. Consider frst 
the cases H = C(2r), or r � 4 and H = P (2r). We next add v to P , and because X2r−1 

induces a clique in G in these cases by Lemma 14, we can in turn add each additional 
vertex of X2r−1 to P as well. Assume u is the last vertex of X2r−1 added to P in this 
fashion. By our choice of H and Lemmas 3, 11, and 13, u must be adjacent to h2r. Hence 
we can add h2r to P and continue. 

Next, consider the case r = 3 and H = P (6). If X2r−1 is empty, then we add h2r to P 
and proceed. Otherwise, let Y be those vertices in X2r−1 that are adjacent to exactly h4, 
h5, and h1 in H, and let Z be those vertices in X2r−1 such that �(z) � 2. By Lemmas 
11, 12, and 13, Y [ Z = X2r−1. If  Y is not empty, assume y 2 Y . By Lemma 8, there 
exists z 2 Z also. Add y to P , and because Y induces a clique in G by Lemma 14, we 
can in turn add each additional vertex of Y to P as well. Assume u is the last vertex of 
Y added to P in this fashion. By Lemma 8, u must be adjacent to z. Hence we can now 
add z to P . If  Y is empty, then Z is not empty, in which case by the defnition of X2r−1, 
we can add z to P . In any event, z is added to P . Because Z induces a clique in G by 
Lemma 14, we can in turn add each additional vertex of Z to P as well. Assume w is the 
last vertex of Z added to P in this fashion. Since �(w) � 2, w must be adjacent to h2r 

by Lemmas 11, 12, and 13. Hence we can add h2r to P and continue. 
Step 4) Now suppose we have constructed a path P such that the terminal vertex of P 

is h2r; each vertex h1, h2, . . . , h2r−1 is contained in P ; and each vertex of X1 [ X2 [ X3 [
. . .[ X2r−1 is contained in P . Moreover, suppose these are the only vertices contained in 
P . If X2r is empty, then we are fnished. Otherwise, assume there exists a vertex v 2 X2r. 
Consider frst the cases H = C(2r), or r � 4 and H = P (2r). By defnition, v must be 
adjacent to h2r in these cases. We next add v to P , and because X2r induces a clique 
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in G by Lemma 14, we can in turn add each additional vertex of X2r to P as well. The 
theorem now follows. 

Next, consider the case r = 3 and H = P (6). If X2r is empty, then we add h2r to P 
and are fnished as before. Otherwise, let Y be those vertices in X2r that are adjacent to 
exactly h1, h2, h5, and h6 in H; let Z be those vertices in X2r such that �(z) � 2; and let 
A be those vertices in X2r that are adjacent to exactly h2, h3, and h6 in H. By Lemmas 
11, 12, and 13, Y [ Z [ A = X2r. We consider three cases. 

Case 1: A is empty. If Y is not empty, assume y 2 Y . Add y to P , and because Y 
induces a clique in G by Lemma 14, we can in turn add each additional vertex of Y to 
P as well. Assume u is the last vertex of Y added to P in this fashion. If Z is empty, 
then we are fnished. Otherwise, suppose z 2 Z. By Lemma 7, u must be adjacent to z. 
Hence we can now add z to P . If  Y is empty, then Z is not empty, in which case by the 
defnition of X2r−1, we can add z to P . In any event, z is added to P . Because Z induces 
a clique in G by Lemma 14, we can in turn add each additional vertex of Z to P as well, 
and are fnished. 

Case 2: A is not empty, but Y is empty. By Lemma 9, Z cannot be empty, and 
moreover, there exists z 2 Z such that z is adjacent to each vertex of A. If  Z contains 
at least two vertices, let z 0 2 Z be some vertex other than z. If  Z consists of only z, let 
z 0 = z. By defnition, z 0 must be adjacent to h2r. Hence we can now add z 0 to P , and 
because Z induces a clique in G by Lemma 14, we can in turn add each additional vertex 
of Z to P in such a way that z is the last vertex added to P in this fashion. Now assume 
a 2 A. Since a is adjacent to z, we can next add a to P . Since A induces a clique in G 
by Lemma 14, we can in turn add each additional vertex of A to P , and are fnished. 

Case 3: A is not empty, and Y is not empty. By Lemma 9, Z cannot be empty, and 
moreover, there exists z 2 Z such that z is adjacent to each vertex of A. If  Z contains 
at least two vertices, let z 0 2 Z be some vertex other than z. If  Z consists of only z, let 
z 0 = z. Assume y 2 Y and a 2 A. Add y to P , and because Y induces a clique in G 
by Lemma 14, we can in turn add each additional vertex of Y to P as well. Assume u is 
the last vertex of Y added to P in this fashion. By Lemma 7, u must be adjacent to z 0 . 
Hence we can now add z 0 to P , and because Z induces a clique in G by Lemma 14, we 
can in turn add each additional vertex of Z to P in such a way that z is the last vertex 
added to P in this fashion. Since a is adjacent to z, we can next add a to P . Since A 
induces a clique in G by Lemma 14, we can in turn add each additional vertex of A to P , 
and are fnished. 

The theorem again follows. � 

Proofs of Lemmas 

Lemma 1. Let G be a graph with r � 1 such that = r. Then G contains either P (2r) 
or C(2r) as an induced subgraph. Moreover, if we let H denote an induced P (2r) or C(2r) 
subgraph, then every vertex of G is either contained in H or is adjacent to H. 

Proof. Let H be an induced r-ciliate guaranteed by Theorem 4. If H is neither P (2r) 
nor C(2r), then considering the defnition of r-ciliates, (H) > r. Since H is induced, 
(G) � (H) > r, a contradiction. Hence H = P (2r) or  H = C(2r). Now suppose v is 



�

�

a vertex of G not contained in H. If  v is not adjacent to H, then clearly we can fnd an 
independent set in G including v with order r + 1, again a contradiction. � 

Lemma 2. Let G be a graph such that = r � 1. Then for each vertex v such that 
v 2 V (G) − V (H), v is adjacent to at least two vertices in H. 

Proof. If v is not adjacent to at least two vertices in H, then clearly we can fnd an 
independent set in G including v with order r + 1, a contradiction. � 

Lemma 3. Let G be a graph with r � 5 such that = r. If  H = C(2r), then for 
each vertex v such that v 2 V (G) − V (H), v is adjacent to exactly two or exactly three 
consecutive vertices in H. 

Proof. Let a and b be two neighbors of v in H such that �(v) =  �(a, b). Put � = �(v). 
Clearly � � r. First, suppose � � 2. Then v is adjacent to a subset of three consecutive 
vertices in H. If � = 1, then v is adjacent to two consecutive vertices. But if � = 2, and v 
is not adjacent to three consecutive vertices in H, then clearly we can fnd an independent 
set in G including v with order r + 1, a contradiction. 

Next, by way of contradiction, suppose � � 3. Now v, a, b are contained in C(�+2) and 
C(2r−�+2) subgraphs, which share only these three vertices. Let C1 denote the C(�+2)  
subgraph and let C2 denote the C(2r − � + 2) subgraph. Note that V (C1) [ V (C2) =  
V (H) [ {v}. We consider three cases. 

Case 1: Suppose � = r. Then C1 = C(r + 2) and C2 = C(r + 2). Since each vertex 
w 2 V (G)−V (H) is adjacent to at least two vertices in H, then the eccentricity of v is at 

�r + 2� 
most + 1. Because r � 5, the eccentricity of v is at most r − 1, a contradiction. 

2 
Case 2: Suppose 4 � � � r − 1. Now � + 2 � r + 1 and 2r − � + 2 � 2r − 2. Then the 

eccentricity of v with relation to H is at most r − 1, which only occurs when � = 4. If 
4 < � � r − 1, since each vertex not in H is adjacent to at least two vertices in H, then 
the eccentricity of v is at most r − 1, a contradiction. Hence � = 4, which in turn implies 
there exists a unique vertex c in H at distance r − 1 from v. Since each vertex not in 
H is adjacent to at least two vertices in H, then the eccentricity of v is at most r − 1, a 
contradiction. 

Case 3: Suppose � = 3. Let c, d be the two vertices separating a from b in H. Now C1 = 
C(5) and C2 = C(2r− 1). Enumerate the vertices of C2 as x0 = v, x1 = a, x2, . . . , x2r−2 = 
b. For each vertex x0, x1, x2, . . . , xr−2 and xr+1, xr+2, . . . , x2r−2, there exist unique vertices 
yj , zj in H such that the distance from xj to both yj and zj with relation to C2 is r − 1. 
Note that yj and zj are adjacent. But the distance from v to both c and d is at most 
2, and the distance from v to the remaining vertices in H is at most r − 1. Thus there 
exists a non-empty collection of vertices Z0 not in H adjacent only to both y0 = xr−1 

and z0 = xr in H, otherwise the eccentricity of v = x0 is at most r − 1, a contradiction. 
Recall r � 5, and consider x1. Then y1 = xr+1 and z1 = xr. Because the distance from 
x1 to both c and d is at most 2 � r − 2, there exists a non-empty collection of vertices 
Z1 not in H adjacent only to both xr and xr+1 in H; otherwise the eccentricity of x1 is 
at most r − 1, a contradiction. Likewise, there exists a non-empty collection of vertices 
Z2 adjacent only to both xr+1 and xr+2 in H; a non-empty collection of vertices Z2r−2 

adjacent only to both xr−1 and xr−2 in H; and a non-empty collection of vertices Z2r−3 
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adjacent only to both xr−2 and xr−3 in H. But this implies � r + 1, unless each vertex 
of Z1 is adjacent to each vertex of Z2r−3. However, then the eccentricity of x1 is at most 
r − 1, again a contradiction. � 

Lemma 4. Let G be a graph with 3 � r � 4 such that = r. Then either: 
1) G contains H = C(2r) as an induced subgraph, and for each vertex v such that 

v 2 V (G)−V (H), v is adjacent to exactly two or exactly three consecutive vertices in H, 
or 

2) G contains P (2r) as an induced subgraph. 

Proof. Let us suppose H = C(2r). We shall show that if v is not adjacent to exactly 
two or exactly three consecutive vertices in H, then G also contains P (2r) as an induced 
subgraph. Let a and b be two neighbors of v on H such that �(v) = �(a, b). Put � = �(v). 
Clearly � � r. 

First, suppose � � 2. Then v is adjacent to a subset of three consecutive vertices in 
H. If  � = 1, then v is adjacent to two consecutive vertices, a contradiction. But if � = 2,  
and v is not adjacent to three consecutive vertices in H, then clearly we can fnd an 
independent set in G including v with order r + 1, a contradiction. 

Therefore, we can assume � � 3. If r = 3, then � = 3, since � � r. If r = 4, then � � 4. 
Now v, a, b are contained in C(�+2) and C(2r− � +2) subgraphs, which share only these 
three vertices. Let C1 denote the C(� + 2) subgraph and let C2 denote the C(2r − � + 2)  
subgraph. Note that V (C1) [ V (C2) = V (H) [ {v}. We consider two cases. 

Case 1: First suppose r = 4. If � = 4, then C1 = C(6) and C2 = C(6). Thus the 
eccentricity of v with relation to H is at most 3. Let c and d be the unique vertices at 
distance 3 from v with relation to C1 and C2, respectively. Since each vertex not in H is 
adjacent to at least two vertices in H, there must exist a vertex w not in H adjacent to 
only c and d in H, otherwise the eccentricity of v would be 3, a contradiction. However, in 
this case, we can choose an independent set of size 5 containing w, another contradiction. 
Hence, we can assume � = 3,  C1 = C(5), and C2 = C(7). Let c and d be the unique 
vertices at distance 3 from v with respect C2. Again, since each vertex not in H is adjacent 
to at least two vertices in H, there must exist a vertex w not in H adjacent to only c and 
d in H, otherwise the eccentricity of v would be 3, a contradiction. But now we can fnd 
an induced P (8) in G, starting with w and including all the vertices of H except d. 

Case 2: Next suppose r = 3. Then � = 3 as noted earlier, C1 = C(5), and C2 = C(5). 
We can assume a = h1 and b = h4. 

Claim: v is adjacent to either both h5 and h6, or  h2 and h3. By way of contradiction, 
suppose v is adjacent to neither h2 nor h6. Then {v, h2, h6} is an independent set in G of 
size 3. Note that the eccentricity of a = h1 with respect to H is at most 2. Moreover, each 
vertex w 6= v not in H must be adjacent to some vertex in {v, h2, h6}; otherwise = 4, a  
contradiction. This implies the eccentricity of a is 2 with respect to G, a contradiction. 
Hence, v is adjacent to either h2 or h6. Next, by a symmetrical argument, we have v is 
adjacent to either h3 or h5. 

If v is adjacent to either both h5 and h6, or both h2 and h3, then the claim is established. 
Thus we can assume v is adjacent to only both h3 and h6 among {h2, h3, h5, h6}. Since 
the eccentricity of v with respect to H is 2, and each vertex not in H is adjacent to at 
least two vertices in H, there must exist a vertex w not in H adjacent to only both h2 and 
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h5 in H. Otherwise, the eccentricity of v with respect to G is at most 2, a contradiction. 
Now, by letting w play the role of v in the preceding paragraph, we can show w must be 
adjacent to either h1 or h3, a contradiction. This completes the claim. 

In light of the claim, we can assume v is adjacent to both h2 and h3. Once again, since 
the eccentricity of v with respect to H is at most 2, and each vertex not in H is adjacent 
to at least two vertices in H, there must exist a vertex w not in H adjacent to only 
both h5 and h6 in H. Otherwise, the eccentricity of v with respect to G is at most 2, a 
contradiction. But now we can fnd an induced P (6) in G, starting with w and including 
all the vertices of H except h6. � 

Lemma 5. Let G be a graph with r � 3 such that = r. If  H = P (2r) and v is a vertex 
such that v 2 V (G) − V (H), then 1 � �(v) � 3. 

Proof. Since v must be adjacent to at least two vertices in H from Lemma 2, the lower 
bound is obvious. Proceeding by contradiction, suppose �(v) � 4 (noting that this 
assumption implies r > 3). Let ha and hb be the two center vertices on the even path 
H, where a < b. Let hm and hn be two vertices in H such that �(v) =  �(hm, hn), where 
we assume n > m. We consider two main cases: 1) m < a and n > b (the centers are 
between the vertices hm and hn in H); and 2) m � a or n � b. 

Case 1a: Suppose that a−m = n−b. We show that the eccentricity of v is at most r−1, 
a contradiction. First, let dF (x, y) be the shortest path distance from vertex x to vertex 
y contained in a graph F . Without loss of generality, we can assume dG(v, b) � dG(v, a), 
as well as dG(v, h2r) � dG(v, h1).Note that there are at least two vertices in H to the left 
of hm and at least two vertices in H to the right of hn, because �(v) � 4 and there must 
be the same number on either side due to our supposition. Consequently, 

dG(v, hb) � dG (v, ha) 
� dG(hm, ha) + 1  
� dH (h1, ha) − dH (h1, hm) + 1  
� dH (h1, ha) − 1 
= r − 2 
Now, since �(v) � 4 and a − m = n − b, we can be assured that dH (hm, ha) =  

dH (hn, hb) � 2. So, 
dG(v, h2r) � dG(v, h1) 
� dG(h1, hm) + 1  
� dH (h1, ha) − dH (hm, ha) + 1  
� dH (h1, ha) − 1 
= r − 2 
By the same token, v can reach the other vertices of H in at most r − 2 steps. This 

implies its eccentricity is at most r− 1, since every vertex in V (G)− V (H) is adjacent to 
a vertex in H by Lemma 1. 

Case 1b: Suppose that, without loss of generality, a− m < n− b. We again show that 
the eccentricity of v is at most r − 1, a contradiction. First, observe that since �(v) � 4, 
there are at most 2r−3 vertices on the induced subpath of H starting with hm and ending 
with hn. This implies the distance between v and every vertex of this induced subpath 
is at most r − 1. Furthermore, since 0 < a − m < n − b, there is at least one vertex 
strictly between hb and hn in H. Hence, dG(v, h2r) � dH (hb, h2r) − 1 =  r − 2. Finally, 
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dG(v, h1) � dH (h1, ha) = r − 1, because dH (hm, ha) � 1. Putting all this together, v can 
reach every vertex in H, except possibly h1, in at most r − 2 steps. Together with the 
facts that v can reach h1 in at most r − 1 steps, and every vertex in H is adjacent to at 
least one vertex in H other than h1 (from Lemma 2), it follows that the eccentricity of v 
is at most r − 1. 

Case 2a: Suppose that, without loss of generality, n � b and m > 1. We show that 
the eccentricity of hb is at most r− 1, a contradiction. Since �(v) � 4, dG(hb, h1) � r− 2. 
Furthermore, since dG(hb, hi) � r − 2 for 3 � i � b − 1 =  a, and dG(hb, h2) � r − 3, we 
conclude that hb is at most r − 2 steps from any vertex in H with index less than b. This 
is also obviously true for all vertices in H with indices at least b, excepting only h2r, since 
dH (hb, h2r) = r − 1. As in the prior case, it follows that the eccentricity of hb is at most 
r − 1. 

Case 2b: Suppose that, without loss of generality, n � b and m = 1. We show that the 
eccentricity of hb is at most r − 1, or � r + 1, a contradiction either way. Assume that 
the eccentricity of hb is at least r. First, observe that dG(hb, h1) � r − 2 (since �(v) � 4), 
and that dG(hb, hi) � r − 2 for 3 � i � b − 1 =  a. Hence, the only vertices in H which 
could be at distance r− 1 from hb are h2 and h2r. Since the eccentricity of hb is at least r, 
there must exist a vertex z 2 V (G) − V (H) which is adjacent to only these two vertices 
in H. But then the vertices in H with odd indices together with z form an independent 
set of order r + 1.  � 

Lemma 6. Let G be a graph with r � 3 such that = r. Suppose H = P (2r). Let  v 
be a vertex such that v 2 V (G) − V (H). Then the neighbors of v in H must be a subset 
of four consecutive vertices. Moreover, if r � 4 and �(v) = 3, the neighbors of v in H 
cannot be a subset of {h1, h2r−2, h2r−1, h2r}, {h1, h2, h2r−1, h2r}, or  {h1, h2, h3, h2r}. 

Proof. By Lemma 2, we know that each v 2 V (G) − V (H) is adjacent to at least two 
vertices in H. If v has exactly two neighbors in H, then its neighborhood restricted to H 
is clearly a subset of four consecutive vertices, since �(v) � 3. So we assume that v has 
at least three neighbors in H and consider two cases for r. 

Case 1: Suppose that r = 3. If v is not adjacent to either of h1 or h6, then its 
neighborhood restricted to H is clearly a subset of four consecutive vertices. So without 
loss of generality suppose that v is adjacent to h1. We now consider two subcases. 

Case 1a: Assume that v is also adjacent to vertex h2. If  v has exactly three neighbors 
in H, then it is easily verifed that its neighborhood restricted to H is a subset of four 
consecutive vertices. So we assume that v has four neighbors in H. In this case, there 
are six possibilities for the adjacencies of the other two neighbors of v in H. If the 
additional two neighbors are exactly {h3, h4}, {h3, h6} or {h5, h6}, then the neighborhood 
of v restricted to H is clearly a subset of four consecutive vertices. So to complete the 
proof of this subcase, we proceed by way of contradiction and assume that the other two 
neighbors of v in H are {h3, h5}, {h4, h5}, or {h4, h6}. First, assume that v is also adjacent 
to h3 and h5. It is straightforward to verify that each vertex in H is at distance at most 
two from v, and that vertices h4 and h6 are the only vertices in H at distance two from 
v. Thus there must exist a vertex zv not in H at distance three from v that is adjacent 
to both h4 and h6, and no other vertices of H. But now {zv, h1, h3, h5} determines an 
independent set of order four, a contradiction to = r = 3. Assume that v is instead 
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adjacent to h4 and h5. It is straightforward to verify that each vertex in H is at distance 
at most two from v, and that vertices h3 and h6 are the only vertices in H at distance 
two from v. Thus there must exist a vertex zv not in H at distance three from v that is 
adjacent to both h3 and h6, and no other vertices of H. It is straightforward to verify 
that each vertex in H is at distance at most two from h3, and that vertices h1, h5, and 
h6 are the only vertices in H at distance two from h3. Thus there must exist a vertex 
z3 not in H at distance three from h3 that is adjacent to a subset of {h1, h5, h6}, and no 
other vertices of H. Further, vertex z3 is not adjacent to zv, otherwise the distance from 
z3 to h3 is not three. But now {zv, z3, h2, h4} determines an independent set of order four, 
a contradiction. Now assume that v is adjacent to h4 and h6. It is straightforward to 
verify that each vertex in H is at distance at most two from v, and that vertices h3 and 
h5 are the only vertices in H at distance two from vertex v. Thus, there must exist a 
vertex zv not in H at distance three from v that is adjacent to both h3 and h5, and no 
other vertices of H. But now {zv, h1, h4, h6} determines an independent set of order four, 
a contradiction. 

Case 1b: Assume that v is not adjacent to h2. If  v has exactly three neighbors in 
H, then it is easily verifed that its neighborhood restricted to H is a subset of four 
consecutive vertices, unless a neighbor of v is h5. If the third neighbor is then either h4 or 
h6, the neighborhood of v restricted to H is a subset of four consecutive vertices. But if 
the neighbors of v restricted to H are precisely {h1, h3, h5}, then {v, h2, h4, h6} determines 
an independent set of order four, a contradiction. Now let us assume that v has exactly 
four neighbors in H. In this case there are four possibilities: vertex v is adjacent to each 
vertex of {h1, h3, h4, h5}, {h1, h3, h4, h6}, {h1, h3, h5, h6}, or  {h1, h4, h5, h6}. The last set 
of vertices are consecutive, so we only consider the frst three possibilities. In each of these 
cases, one can verify that each vertex in H is at distance at most two from v, and that 
the two vertices in H not adjacent to v are the only vertices in H at distance two from v. 
Thus there must exist a vertex zv not in H at distance three from v that is adjacent to the 
two vertices of H not adjacent to v (h2 and h6, h2 and h5, or h2 and h4, respectively) and 
no other vertices of H. Finally, in each of these cases we will demonstrate an independent 
set of order four, which contradicts = r = 3. The independent sets are {zv, h1, h3, h5}, 
{zv, h1, h4, h6}, or  {zv, h1, h3, h6}, respectively. 

Case 2: Suppose that r � 4. Let k be the smallest integer such that v is adjacent to 
hk. If k � 4, then since �(v) � 3, the neighborhood of v restricted to H is clearly a subset 
of four consecutive vertices. We now consider the three remaining subcases separately. 

Case 2a: Assume that k = 3. If v is not adjacent to h2r, then since �(v) � 3, the 
neighborhood of v restricted to H is clearly a subset of four consecutive vertices. So we 
will assume that v is adjacent to h2r. We will show that v must have at least one other 
neighbor in H, otherwise our assumption = r will be violated. Suppose v is adjacent 
to precisely h3 and h2r of H. Each vertex in H is at distance at most r − 1 from vertex 
h3, and hr+2 and hr+3 are the only vertices in H at distance r − 1 from vertex h3. Thus, 
there must exist a vertex z3 not in H at distance r from h3 that is adjacent to hr+2 and 
hr+3 , and no other vertices of H. If r is even, then {h1, h3, ..., hr+1, hr+4, hr+6, ..., h2r, z3}
determines an independent set of order r + 1. Hence we can assume r > 4 and r is odd. 
Then each vertex in H is at distance at most r − 1 from v, and hr+1 and hr+2 are the 
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only vertices in H at distance r − 1 from v. Thus, there must exist a vertex zv not in H 
at distance r from v that is adjacent to hr+1 and hr+2, and no other vertices of H. Then 
{h1, h3, ..., hr, hr+3, hr+5, ..., h2r, zv} determines an independent set of order r + 1. Thus, 
if k = 3, then v must have another neighbor in H in addition to h3 and h2r, otherwise 
6 r.= 
Since k = 3,  v is adjacent to h3 and h2r, and �(v) � 3, any other neighbor of v in H, 

say hj , must satisfy both j − 3 � 3 and 2r − j � 3, which imply that 2r − 3 � j � 6. 
So if r � 5, then v could only be adjacent to h3 and h2r of H, which we have shown is 
impossible when = r. Thus, we can assume that r = 4, and note that any neighbor of 
v in H other than h3 and h2r has index either 5 or 6. But v cannot be adjacent to either 
h5 or h6, otherwise the eccentricity of v would be less than four. Thus, when k = 3, the 
neighborhood of v restricted to H is clearly a subset of four consecutive vertices. 

Case 2b: Assume that k = 2. If v is not adjacent to h2r nor to h2r−1, then since 
�(v) � 3, the neighborhood of v restricted to H is clearly a subset of four consecutive 
vertices. So we will assume that v is adjacent to at least one of h2r−1 and h2r. Moreover, 
we observe that if v is only adjacent to h2, h2r−1, and h2r in H, then the neighborhood 
of v restricted to H is clearly a subset of four consecutive vertices. Thus, we can assume 
that v has at least one additional neighbor in H. 

Suppose that v is adjacent to h2r. Now since �(v) � 3 and v is adjacent to h2 and h2r, 
it follows that v can only be adjacent to h3 or h2r−1 when r � 5; or h3, h5, or  h7 when 
r = 4. If v is adjacent to only h2, h2r, h3, or only to h2, h2r, h2r−1 in H, then it follows 
that the neighborhood of v restricted to H is a subset of four consecutive vertices. If v 
is adjacent to h2, h2r and to both h3 and h2r−1, then each vertex in H is at distance at 
most r − 1 from v, and hr+1 is the only vertex that is possibly at distance exactly r − 1 
from v. But this implies that the eccentricity of v is less than r. Lastly, when r = 4 and v 
is adjacent to h5, each vertex in H is at distance at most two from v, which implies that 
the eccentricity of v is less than four. 

Next, suppose that v is not adjacent to h2r. We previously noted that in this case v 
must be adjacent to h2r−1. Now since �(v) � 3 and v is adjacent to h2 and h2r−1, if r � 5, 
then v can have no other neighbors in H, in which case the neighborhood of v restricted 
to H is clearly a subset of four consecutive vertices. If r = 4, then since �(v) � 3 and v 
is adjacent to h2 and h2r−1, v can also be adjacent to either h4 or h5. But if r = 4 and v 
is adjacent to either h4 or h5, then each vertex in H is at distance at most two from v, 
which implies that the eccentricity of v is less than four. 

Case 2c: Assume that k = 1. If v is not adjacent to any of h2r−2, h2r−1, or  h2r, then 
since �(v) � 3, the neighborhood of v restricted to H is clearly a subset of four consecutive 
vertices. So we will assume that v is adjacent to at least one of h2r−2, h2r−1, or  h2r. Let 
k 0 be the smallest integer among 2r − 2, 2r − 1, and 2r such that v is adjacent to hk 0 . 

Suppose that k 0 = 2r− 2. In this case, since �(v) � 3 and v is adjacent to both h1 and 
h2r−2, if r � 5, then v can have no other neighbors in H, in which case the neighborhood 
of v restricted to H is clearly a subset of four consecutive vertices. If r = 4, then since 
�(v) � 3 and v is adjacent to h1 and h2r−2, v can be adjacent to either h3 or h4. But if 
r = 4 and v is adjacent to either of h3 or h4, then each vertex in H is at distance at most 
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three from v, and h8 is the only vertex that is possibly at distance exactly three from v. 
But this implies that the eccentricity of v is less than four. 

Suppose that k 0 = 2r−1. In this case, since �(v) � 3 and v is adjacent to h1 and h2r−1, 
if r � 5, then v can have at most one other neighbor in H, namely h2, in which case the 
neighborhood of v restricted to H is clearly a subset of four consecutive vertices. If r = 4,  
then since �(v) � 3 and v is adjacent to h1 and h2r−2, v can be adjacent to h2 or h4. If  
r = 4 and v is not adjacent to h4, then the neighborhood of v restricted to H is clearly a 
subset of four consecutive vertices. If r = 4 and v is adjacent to h4, then each vertex in 
H is at distance at most two from v, which implies that the eccentricity of v is less than 
four. 

Finally, suppose that k 0 = 2r. In this case, since �(v) � 3 and v is adjacent to h1 and 
h2r (but not to h2r−1 and h2r−2), v can have at most two other neighbors in H, namely h2 

and h3. In this case (which also completes the frst claim in the statement of the lemma), 
the neighborhood of v restricted to H is a subset of four consecutive vertices. 

Before proving that if r � 4, the neighbors of v in H cannot be a subset of {h1, h2r−2, 
h2r−1, h2r}, let us note that once this is proven, the fact that the neighbors of v in H 
cannot be a subset of {h1, h2, h3, h2r} will follow by a symmetric argument. To prove 
that the neighbors of v in H cannot be subset of {h1, h2r−2, h2r−1, h2r}, let us suppose 
otherwise. Since �(v) = 3, and we have assumed that the set of neighbors of v in H is 
a subset of {h1, h2r−2, h2r−1, h2r}, it follows that vertex v must be adjacent to vertices h1 

and h2r−2. Since r � 4, it is easily verifed that hr−2 and hr−1 are the only vertices in 
H possibly at distance r − 1 from h2r−2. Thus, there must exist a vertex z not in H at 
distance r from h2r−2 that is adjacent to both hr−2 and hr−1, and no other vertices in H. 
If r is even, then the set {h1, h3, ..., hr−3, hr, hr+2, ..., h2r, z} determines an independent 
set of order r + 1, which contradicts = r. So suppose that r is odd. Then r � 5, and 
we consider the eccentricity of vertex v. In this case, since r � 5, it is easily verifed that 
hr−1 and hr are the only vertices in H possibly at distance r − 1 from v. Thus, there 
must exist a vertex z not in H at distance r from v that is adjacent to both hr−1 and 
hr, and no other vertices in H. In this case, the set {h1, h3, ..., hr−2, hr+1, hr+3, ..., h2r, z}
determines a independent set of order r + 1, again a contradiction to = r. 

Next we show that if r � 4, then the neighbors of v in H cannot be a subset of 
{h1, h2, h2r−1, h2r}. Let us suppose otherwise. Since �(v) = 3, and we have assumed that 
the set of neighbors of v in H is a subset of {h1, h2, h2r−1, h2r}, it follows that v must be 
adjacent to h2 and h2r−1. Since r � 4, it is easily verifed that hr and hr+1 are the only 
vertices in H possibly at distance r − 1 from v. Thus, there must exist a vertex z not in 
H at distance r from v that is adjacent to both hr and hr+1, and no other vertices in H. 
If r is even, the set {h1, h3, ..., hr−1, hr+2, hr+4, ..., h2r, z} determines an independent set of 
order r + 1, which contradicts = r. Thus, r must be odd. In this case, r � 5, and since 
hr−1 and hr are the only vertices in H possibly at distance r − 1 from h2r−1, there exists 
a vertex z not in H adjacent to both hr−1 and hr, and no other vertices in H. In this 
case, the set {h1, h3, ..., hr−2, hr+1, hr+3, ..., h2r, z} determines an independent set of order 
r + 1, again a contradiction. � 
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Lemma 7. Let G be a graph with = r = 3. Suppose H = P (6). Let  U ˆ V (G)− V (H) 
be a collection of vertices such that for every u 2 U , �(u) = 3  and the neighbors of u in 
H are a subset of {h1, h2, h5, h6}. Then U must induce a clique in G, and each vertex 
u 2 U must be adjacent to each of the vertices {h1, h2, h5, h6}. Moreover, if there exists a 
vertex v 2 V (G)− V (H) adjacent to h6 such that the neighbors of v in H are a subset of 
{h1, h2, h6}, then v is adjacent to each vertex of U . 

Proof. First, we prove that every vertex u 2 U must be adjacent to each of the vertices 
{h1, h2, h5, h6}. For any u 2 U , since �(u) = 3 and the neighbors of u that are in 
H determine a subset of {h1, h2, h5, h6}, u must be adjacent to h2 and h5. Further, u 
must be adjacent to at least one of h1 or h6, otherwise the independent set {h1, h3, h6, u}
contradicts = r = 3. Now we proceed by contradiction, and without loss of generality, 
suppose that u is not adjacent to h6. Then let us consider the eccentricity of h5. It  
is easily verifed that there must be a vertex z at distance three from vertex h5 that is 
adjacent to only a subset of h1, h2, and h3 in H. Note that z cannot be adjacent to vertex 
u, otherwise z is not at distance three from h5. But then there exists an independent 
set of order four, namely {u, h4, h6, z}, which contradicts = r = 3. Thus, every vertex 
u 2 U must be adjacent to each of the vertices h1, h2, h5, and h6. 

Next, to prove that U must induce a clique in G, let us suppose otherwise. Let u1 and 
u2 be nonadjacent vertices in U . It is easily verifed that there must exist a vertex z at 
distance three from h5 that is adjacent to only a subset of h1, h2, and h3 in H. Note that 
z cannot be adjacent to any of u1, u2, or  h4, otherwise it is not at distance three from 
h5. In this case, {u1, u2, h4, z} will determine an independent set of order four, which 
contradicts = r = 3. Thus the vertices of U must induce a clique in G. 

To prove our last claim, suppose that there exists a vertex v 2 V (G) − V (H) adjacent 
to h6 such that the neighbors of v in H are a subset of {h1, h2, h6}, but that v is not 
adjacent to some vertex u 2 U . We have proven that u must be adjacent to each of the 
vertices {h1, h2, h5, h6}. By assumption, v is adjacent to h6 and if its only other neighbor 
in H is h2, then the set {h1, h3, h5, v} would contradict = r = 3. Thus, v must be 
adjacent to h1. It is straightforward to verify that each vertex in H is at distance at most 
two from vertex u, and that vertices h3 and h4 are the only vertices in H at distance 
two from vertex u. Thus there must exist a vertex zu not in H at distance three from 
u that is adjacent to both h3 and h4, and no other vertices of H. Similarly, there must 
exist a vertex z5 not in H at distance three from h5 that is adjacent to some subset of h1, 
h2, and h3, and no other vertices of H. Vertex z5 must be adjacent to h2, otherwise the 
set {z5, h2, h4, h6} would contradict = r = 3. Vertex z5 must also be adjacent to h1, 
otherwise the set {z5, h1, h4, h6} would likewise contradict = r = 3. Moreover, since 
u is adjacent to h5, z5 is not adjacent to u. By a symmetric argument, there must exist 
a vertex z2 not in H at distance three from h2 that is adjacent to some subset of h4, 
h5, and h6, and no other vertices of H. Vertex z2 must be adjacent to h5, otherwise the 
set {z2, h1, h3, h5} would contradict = r = 3. Vertex z2 must also be adjacent to h6, 
otherwise the set {z2, h1, h3, h6} would likewise contradict = r = 3. Moreover, since 
u is adjacent to h2, z2 is not adjacent to u. In order that {u, v, h4, z5} not determine 
an independent set of order four, the only possibility is that v and z5 must be adjacent. 
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Similarly, in order that {u, v, h3, z2} not determine an independent set of order four, the 
only possibility is that v and z2 must be adjacent. 

By assumption, the neighbors of v in H are a subset of {h1, h2, h6}, but since we have 
shown that v must be adjacent to z2, it follows that v cannot be adjacent to h2, otherwise 
z2 would not be at distance three from h2. In order that {h2, h5, v, zu} not determine an 
independent set of order four, the only possibility is that v and zu are adjacent. In this 
case, let us consider the eccentricity of v. It is at distance at most two from each vertex of 
H [ {u, zu, z2, z5}, and distance two from all vertices in H except h1 and h6. Thus, there 
exists a vertex zv adjacent to a subset of vertices of H that does not include the vertices 
h1 and h6. In this case, in order that {h1, h6, zv, zu} not determine an independent set of 
order four, the only possibility is that zv and zu are adjacent. But this contradicts that zv 

is at distance three from v, since we had earlier deduced that v and zu are adjacent. � 

Lemma 8. Let G be a graph with = r = 3. Suppose H = P (6). Let  U ˆ V (G)−V (H) 
be a collection of vertices such that for every u 2 U , �(u) = 3  and the neighbors of u in 
H are a subset of {h1, h4, h5, h6}. Then U must induce a clique in G, and each vertex 
u 2 U must be adjacent to exactly the set {h1, h4, h5} in H. Moreover, there exists a 
vertex v 2 V (G) − V (H) adjacent to exactly the set {h1, h5, h6} in H, and each such 
vertex v is adjacent to each vertex of U . 

Proof. For any u 2 U , since �(u) = 3 and the neighbors of u that are in H determine 
a subset of {h1, h4, h5, h6}, u must be adjacent to h1 and h4. First, let us prove that u 
cannot be adjacent to h6. Suppose otherwise. In this case, u is at distance at most two 
from each vertex in H, and the only vertices in H at distance two from vertex u are h2, 
h3, and possibly h5. Thus there exists a vertex z at distance three from vertex u that 
is adjacent to some subset of the vertices h2, h3, and h5, and to no other vertices in H. 
But now {h1, h4, h6, z} determines an independent set of order four, a contradiction to 

= r = 3. Thus the neighbors of u that are in H determine a subset of {h1, h4, h5}. 
Next, suppose that u is not adjacent to h5. Then we consider the eccentricity of h4. Since 
it is at distance at most two from each vertex in H, and at distance exactly two from 
vertices h1, h2, and h6, there exists a vertex z at distance three from h4 that is adjacent to 
some subset of {h1, h2, h6}, and to no other vertices in H. Moreover, z is not adjacent to 
u, otherwise z is not at distance three from h4. But now {h3, h5, u, z} is an independent 
set that contradicts = r = 3. Thus, u must be adjacent to exactly the set {h1, h4, h5}
in H. 

Next, to prove that U must induce a clique in G, let us suppose otherwise. Let u1 and 
u2 be nonadjacent vertices in U . It is easily verifed that there must exist a vertex z at 
distance three from h4 that is adjacent to only a subset of {h1, h2, h6} in H. Moreover, 
z cannot be adjacent to either u1 or u2, otherwise z is not at distance three from h4. In  
this case, {u1, u2, h3, z} will determine an independent set of order four, which contradicts 

= r = 3. Thus the vertices of U must induce a clique in G. 
To prove our last claim, note that we have proven that a vertex u 2 U must be adjacent 

to exactly the set {h1, h4, h5} in H. It is straightforward to verify that each vertex in H 
is at distance at most two from h4, and that vertices {h1, h2, h6} are the only vertices in 
H at distance two from vertex h4. Thus there must exist a vertex z4 not in H at distance 
three from h4 that is adjacent to some subset of {h1, h2, h6}, and no other vertices of H. 
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Moreover, since u is adjacent to h4, z4 is not adjacent to vertex u, otherwise the distance 
from h4 to z4 is not three as assumed. Vertex z4 must be adjacent to both of h1 and h6, 
otherwise one of {u, z4, h3, h6} or {h1, h3, h5, z4} contradicts = r = 3. Similarly, it is 
easy to verify that each vertex in H is at distance at most two from vertex u, and that 
vertices {h2, h3, h6} are the only vertices in H at distance two from vertex u. Thus, there 
must exist a vertex zu not in H at distance three from u that is adjacent to some subset 
of {h2, h3, h6}, and no other vertices of H. Vertex zu must be adjacent to both of h3 and 
h6, otherwise one of {h1, h3, h5, zu} or {h1, h4, h6, zu} contradicts = r = 3. We prove 
the following claim. 

Claim: zu is adjacent to h2. By way of contradiction, suppose that zu is not adjacent 
to h2. One can check that each vertex in H is at distance at most two from vertex h3, and 
the vertices {h1, h5, h6} are the only vertices in H at distance two from vertex h3. Thus, 
there must exist a vertex z3 not in H at distance three from h3 that is adjacent to some 
subset of {h1, h5, h6}, and no other vertices of H. Moreover, since zu is adjacent to h3, z3 

is not adjacent to zu, otherwise z3 and h3 are not at distance three as assumed. But now 
{h2, h4, zu, z3} contradicts = r = 3. Thus, zu is adjacent to h2. 

In this case, each vertex in H is at distance at most two from h6, and vertices {h1, h2, h3, h4}
are the only vertices in H at distance two from vertex h6. Thus, there must exist a vertex 
z6 not in H at distance three from h6 that is adjacent to some subset of {h1, h2, h3, h4}, 
and no other vertices of H. Since z4 and zu are adjacent to h6, z6 is not adjacent to either 
z4 or zu, otherwise the distance from h6 to z6 is not three as assumed. So we see that 
z4 must be adjacent to zu, otherwise {z4, z6, zu, h5} will determine an independent set of 
order four, which contradicts = r = 3.  

Since z6 must be adjacent to two vertices in H, each vertex of H [ {u, zu, z4, z6} is at 
distance at most two from vertex h3, and vertices h1, h5, and h6 are the only vertices in 
H at distance two from vertex h3. Thus, there must exist a vertex z3 not in H at distance 
three from h3 that is adjacent to some subset of {h1, h5, h6}, and no other vertices of H. 
At this point, we note that the focus of the remainder of our proof is to demonstrate that 
z3 is the vertex v that exists as claimed in the statement of the lemma. Vertex z3 must 
be adjacent to h6, otherwise {h2, h4, h6, z3}will determine an independent set of order 
four, which contradicts = r = 3. Since zu is adjacent to h3, vertices zu and z3 are 
not adjacent, otherwise the distance from h3 to z3 is not three as assumed. Thus, we 
can now argue that z3 must be adjacent to h1, otherwise {h1, h4, z3, zu} will determine an 
independent set of order four, which contradicts = r = 3. Finally, we see that z3 must 
indeed be adjacent to h5 as well. Otherwise {z3, z6, zu, h5} will determine an independent 
set of order four, which contradicts = r = 3 (note that z3 cannot be adjacent to z6). 
Thus, there is a vertex v 2 V (G) − V (H) adjacent to exactly the set {h1, h5, h6} in H. 

To complete the proof, let us observe that z6 must be adjacent to h1, otherwise 
{h1, h5, zu, z6} will determine an independent set of order four, which contradicts = 
r = 3. Now it is easily verifed that each vertex in H is at distance at most two from 
h1, and that vertices {h3, h4, h5, h6} are the only vertices in H at distance two from h1. 
Thus, there must exist a vertex z1 not in H at distance three from h1 that is adjacent 
to some subset of {h3, h4, h5, h6}, and no other vertices of H. Since vertices u and z3 are 
adjacent to h1, z1 is not adjacent to either u or z3, otherwise the distance from h1 to z1 
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is not three as assumed. It follows that z3 must be adjacent to u, otherwise {u, z1, z3, h2}
will determine an independent set of order four, which contradicts = r = 3.  � 

Lemma 9. Let G be a graph with = r = 3. Suppose H = P (6). Let  U ˆ V (G)− V (H) 
be a collection of vertices such that for every u 2 U , �(u) = 3  and the neighbors of u in 
H are a subset of {h1, h2, h3, h6}. Then U must induce a clique in G, and each vertex 
u 2 U must be adjacent to exactly the set {h2, h3, h6} in H. Moreover, there exists a 
vertex v 2 V (G) − V (H) adjacent to exactly the set {h1, h2, h6} in H, and each such 
vertex v is adjacent to each vertex of U . 

Proof. The proof is symmetric to the proof of Lemma 8. � 

Lemma 10. Let G be a graph with r � 3 such that = r. Assume H = P (2r). Suppose 
U is a collection of vertices such that U ˆ V (G)− V (H) and k =min{j | u 2 U and u is 
adjacent to hj }. Moreover, suppose for every u 2 U that u is adjacent to hk, and �(v) = 3  
for some v 2 U . Then: 

1) If 2 � k � 2r−4, then there exists a vertex z 2 V (G)−V (H) such that z is adjacent 
to both h1 and h2r. Furthermore, z is adjacent to only these two vertices in H, and z is 
not adjacent to any vertex u 2 U . 

2) If k = 1  and for every vertex u 2 U , u is adjacent to h4 and the neighbors of u in 
H are a subset of {h1, h2, h3, h4}, then there exists a vertex z 2 V (G)− V (H) such that z 
is adjacent to h1 and at least one of h2 and h2r. Furthermore, z is adjacent to only these 
vertices in H, and z is not adjacent to any vertex u 2 U . 

3) If k = 2r − 3 and for every vertex u 2 U , the neighbors of u in H are a subset 
of {h2r−3, h2r−2, h2r−1, h2r}, then there exists a vertex z 2 V (G) − V (H) such that z is 
adjacent to h2r and at least one of h1 or h2r−1. Furthermore, z is adjacent to only these 
vertices in H, and z is not adjacent to any vertex u 2 U . 

Proof. By Lemma 2, we know that v is adjacent to at least two vertices in H. First, we 
make the following simple but useful observations. 

*) If k � 4, then since �(v) = 3,  v is adjacent to hk+3. 
**) If k � 3, then since �(v) = 3,  v is adjacent to hk+3 or h2r−(3−k). 
Proof of 1). Recall we are assuming that 2 � k � 2r − 4. First, suppose r = 3. Then 

k = 2, and by **, v is adjacent to h2 and also h5. We begin by showing that v is not 
adjacent to h6, so suppose otherwise. In this case, it is straightforward to verify that 
each vertex in H is at distance at most two from h2, and that h4, h5, and h6 are the 
only vertices in H possibly at distance two from h2. Thus, there must exist a vertex z2 

not in H at distance three from v that is adjacent to a subset of h4, h5, and h6, and 
no other vertices of H. Clearly, z2 is not adjacent to v, otherwise h2 and z2 are not at 
distance three, as assumed. But now, the set {h1, h3, v, z2} contradicts = r = 3. Next, 
observe that v must adjacent to both h3 and h4, otherwise an independent set of order 
four is easily found, namely {h1, h3, h6, v} or {h1, h4, h6, v}. Now, it is straightforward to 
verify that each vertex in H is at distance at most two from v, and that h1 and h6 are 
the only vertices in H at distance two from v. Thus, there must exist a vertex z not in 
H at distance three from v that is adjacent to both h1 and h6, and no other vertices of 
H. Clearly, z is not adjacent to v, otherwise they are not at distance three, as assumed. 
If there is some u 2 U that is adjacent to z, then by assumption u is also adjacent to h2 
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but not to v (otherwise z and v are not at distance three). Vertex u must be adjacent to 
h6, otherwise the set {u, v, h1, h6} contradicts = r = 3. Now, it is easily verifed that 
there must be a vertex z2 not in H at distance three from h2. Since z2 is not adjacent to 
v, u, and h1, the set {u, v, h1, z2} contradicts = r = 3. Thus, 10.1) is true when r = 3.  

Next suppose that r � 4, and let us consider fve cases. 
Case 1a: Suppose that k = 2. Then by **, v may be adjacent to h5 or h2r−1. By Lemma 

6, we see that v cannot be adjacent to both h5 and h2r−1, otherwise the neighborhood of 
v restricted to H is a not subset of four consecutive vertices. 

First, we will show that v cannot be adjacent to h2r−1. So suppose otherwise. In this 
case, by Lemma 6, we see that the only other possible neighbor of v is h2r, otherwise the 
neighborhood of v in H is not a subset of four consecutive vertices. Observe that v is at 
distance at most r− 1 from all vertices of H. Moreover, hr and hr+1 are the only vertices 
possibly at distance r − 1 from v in H. Thus, there is a vertex zv at distance r from v 
that is adjacent to hr and hr+1, and no other vertices of H. Now, if r is even, then the 
set {h1, h3, ..., hr−1, hr+2, hr+4, ..., h2r, zv} determines an independent set of order r + 1,  
which contradicts = r. If  r is odd, then observe h2 is at distance at most r − 1 from 
all vertices of H. Moreover, hr+1 and hr+2 are the only vertices possibly at distance r− 1 
from v in H. Thus, there is a vertex z2 at distance r from h2 that is adjacent to hr+1 

and hr+2, and no other vertices of H. In this case, the set {h1, h3, ..., hr, hr+3, ..., h2r, z3}
determines an independent set of order r + 1, which contradicts = r. 

Next, suppose that v is adjacent to h5. By Lemma 6, we see that the only other 
neighbors of v are h3 and h4, otherwise the neighborhood of v in H is not a subset of 
four consecutive vertices. Next, observe that v must be adjacent to both h3 and h4, 
otherwise an independent set of order r + 1 is easily found, namely {h1, h3, h6, ..., h2r, v}
or {h1, h4, h6, ..., h2r, v}. Now, it is easily verifed that hr+1 is at distance at most r − 1 
from all vertices of H. Moreover, h1 and h2r are the only vertices in H possibly at distance 
r − 1 from hr+1. Thus, there is a vertex z = zr+1 at distance r from hr+1 that is adjacent 
to h1 and h2r, and no other vertices of H. Clearly, zr+1 is not adjacent to v, otherwise hr+1 

and zr+1 are not at distance r, as assumed. If there is some u 2 U that is adjacent to zr+1, 
then by assumption u is also adjacent to h2, but not to any of h4, h5, ..., h2r−2 (otherwise, 
hr+1 and zr+1 are not at distance r). Now, in order that the set {h1, h4, h6, ..., h2r, u} not 
be an independent set of order r+1, u must be adjacent to h2r. Vertex u may be adjacent 
to h3 or h2r−1, but not to both, since by Lemma 6 the neighborhood of u restricted to 
H must be a subset of four consecutive vertices. If u is adjacent to h3, then it is easily 
verifed that u is at distance at most r−1 from all vertices of H. Moreover, hr+1 and hr+2 

are the only vertices in H possibly at distance r− 1 from u. Thus, there is a vertex zu at 
distance r from u that is adjacent to hr+1 and hr+2, and no other vertices of H. Similarly, 
it is easily verifed that h3 is at distance at most r − 1 from all vertices of H. Moreover, 
hr+2 and hr+3 are the only vertices in H possibly at distance r− 1 from h3. Thus, there is 
a vertex z3 at distance r from h3 that is adjacent to hr+2 and hr+3, and no other vertices 
of H. Now, if r is odd, then the set {h1, h3, ..., hr, hr+3, hr+5, ..., h2r, zu} determines an 
independent set of order r + 1, which contradicts = r. And, if r is even, then the set 
{h1, h3, ..., hr+1, hr+4, hr+6, ..., h2r, z3} determines an independent set of order r+1, which 
contradicts = r. Thus if k = 2,  v is adjacent to h5, and r � 4, then 10.1) holds. 
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Case 1b: Suppose that k = 3. Then by **, v may be adjacent to h6 or h2r. By Lemma 
6, we see that v cannot be adjacent to both h6 and h2r, otherwise the neighborhood of v 
restricted to H is a not subset of four consecutive vertices. 

First, we will show that v is not adjacent to h2r. So suppose otherwise. In this case, by 
Lemma 6 we see that v can have no other neighbors in H, otherwise the neighborhood 
of v in H is not a subset of four consecutive vertices. Next, it easily verifed that v is 
at distance at most r − 1 from all vertices of H. Moreover, hr+1 and hr+2 are the only 
vertices possibly at distance r − 1 from vertex v in H. Thus, there is a vertex zv at 
distance r− 1 from vertex v that is adjacent to hr+1 and hr+2, and no other vertices of H. 
If r is even, then the set {h2, h4, ..., hr, hr+3, ..., h2r−1, zv, v} determines an independent 
set of order r + 1, which contradicts = r. Now, observe that h3 is at distance at most 
r − 1 from all vertices of H, and that hr+2 and hr+3 are the only vertices possibly at 
distance r − 1 from vertex h3 in H. Thus, there is a vertex z3 at distance r − 1 from h3 

that is adjacent to hr+2 and hr+3, and no other vertices of H. So, if r is odd, then the 
set {h2, h4, ..., hr+1, hr+4, ..., h2r−1, z3} determines an independent set of order r+1, which 
contradicts = r. Thus, we assume that v is adjacent to h6. By Lemma 6, we see that 
the only other neighbors of v in H are h4 and h5, otherwise the neighborhood of v in H 
is not a subset of four consecutive vertices. If r = 4, then it is easily verifed that v is at 
distance at most three from all vertices of H. Moreover, h1 and h2r are the only vertices 
possibly at distance three from vertex u in H. Thus, there is a vertex z = zv at distance 
four from vertex v that is adjacent to h1 and h2r, and no other vertices of H. If there is 
some u 2 U that is adjacent to zv, then by assumption u is also adjacent to h3, but now v 
and zv are at distance three, which contradicts our assumption that they were at distance 
four. On the other hand, if r � 5, then it is easily verifed that hr+1 is at distance at 
most r − 1 from all vertices of H. Moreover, h1 and h2r are the only vertices possibly at 
distance r − 1 from vertex hr+1. Thus, there is a vertex z = zr+1 at distance r from hr+1 

that is adjacent to h1 and h2r, and no other vertices of H. If there is some u 2 U that is 
adjacent to zr+1, then by assumption u is also adjacent to h3, but now hr+1 and zr+1 are 
at distance four, which contradicts our assumption that they are at distance r � 5. Thus 
if k = 3,  v is adjacent to h6, and r � 4, then 10.1) holds. 

Case 1c: Suppose that 4 � k � r − 2. Then r � 6 and 7  � k + 3  � r + 1. By *, v is 
adjacent to hk+3. Now it is easily verifed that hr+1 is at distance at most r − 1 from all 
vertices of H. Moreover, h1 and h2r are the only vertices in H possibly at distance r − 1 
from hr+1. Thus, there is a vertex z = zr+1 at distance r from hr+1 that is adjacent to 
h1 and h2r, and no other vertices of H. Clearly, v is not adjacent to zr+1, otherwise hr+1 

and zr+1 are not at distance r as assumed. Now assume, by way of contradiction, that 
zr+1 is adjacent to some u 2 U . By defnition of the set U , u is adjacent to hk. But now 
the distance between zr+1 and hr+1 is less than r, which contradicts our assumption that 
the distance from zr+1 to hr+1 is r. 

Case 1d: If k = r− 1, then k +3 = r +2 and the distance from v to all vertices of H is 
at most r − 1. Moreover, h1and h2r are the only vertices possibly at distance r − 1 from 
v. Thus, there is a vertex z = zv at distance r from v that is adjacent to h1 and h2r, and 
clearly v is not adjacent to zv. Now assume, by way of contradiction, that zv is adjacent 
to some u 2 U . By defnition of the set U , u is adjacent to hk . But now the distance 
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between v and zv is three, which contradicts our assumption that the distance from zv to 
v is r � 4. 

Case 1e: Suppose that r � k � 2r − 4. Then r + 3 � k + 3 � 2r − 1. In this case, let 
us consider the eccentricity of hr. Vertex hr is at distance at most r − 1 from all vertices 
of H. Moreover, h1 and h2r are the only vertices possibly at distance r−1 from hr. Thus, 
there is a vertex z = zr at distance r from hr that is adjacent to h1 and h2r, and clearly 
v is not adjacent to zr. Now assume, by way of contradiction, that zr is adjacent to some 
u 2 U . By defnition of the set U , u is adjacent to hk. But now the distance between zr 

and hr is less than r, which contradicts our assumption that the distance from zr to hr is 
r. 

Proof of 2). Assume that k = 1 and for every vertex u 2 U , u is adjacent to h4 and 
the neighbors of u in H are a subset of {h1, h2, h3, h4}. Because �(v) = 3,  v is adjacent 
to h1 and h4. Let us consider the eccentricity of hr+1. Since r � 3, all vertices of H 
are at distance at most r − 1 from hr+1, and h1, h2, and h2r are the only vertices in H 
possibly at distance r − 1 from hr+1. Thus, there must exist a vertex z = zr+1 adjacent 
to at least two of h1, h2, and h2r in H. If  zr+1 is adjacent to only h2 and h2r, then 
{h1, h3, h5, ..., h2r−1, zr+1} determines an independent set of order r + 1, a contradiction 
to = r. Thus, zr+1 must be adjacent to h1. Since zr+1 must have two neighbors in H, 
zr+1 must be adjacent to at least one of h2 or h2r. Clearly, z is not adjacent to v. Now, 
assume by way of contradiction, that zr+1 is adjacent to some u 2 U . By defnition of 
the set U , u is adjacent to h4. But now the distance between zr+1 and hr+1 is less than 
r, which contradicts our assumption that the distance from zr+1 to hr+1 is r. 

Proof of 3). Assume that k = 2r− 3 and for every vertex u 2 U , the neighbors of u in 
H are a subset of {h2r−3, h2r−2, h2r−1, h2r}. Because �(v) = 3,  v is adjacent to h2r−3 and 
h2r. Let us consider the eccentricity of hr. Since r � 3, all vertices of H are at distance at 
most r − 1 from hr, and h1, h2r−1, and h2r are the only vertices in H possibly at distance 
r− 1 from hr. Thus, there must exist a vertex z = zr adjacent to at least two of h1, h2r−1, 
and h2r in H. If  zr is adjacent only to h1 and h2r−1 in H, then {h2, h4, h6, ..., h2r, zr}
determines an independent set of order r + 1, a contradiction to = r. Thus, zr must be 
adjacent to h2r. Since zr must have two neighbors in H, zr must be adjacent to at least 
one of h1 or h2r−1. Clearly, zr is not adjacent to v. Now, assume by way of contradiction, 
that zr is adjacent to some u 2 U . By defnition of the set U , u is adjacent to h2r−3. But 
now the distance between zr and hr is less than r, which contradicts our assumption that 
the distance from zr to hr is r. � 

Lemma 11. Let G be a graph with r � 3 such that = r. Suppose H = P (2r). Moreover, 
suppose v is a vertex such that v 2 V (G) − V (H) and the neighbors of v include neither 
h1 nor h2r. Then v is adjacent to exactly two, exactly three, or exactly four consecutive 
vertices in H. 

Proof. Let k be the smallest integer such that v is adjacent to hk. Then clearly k � 2. 
By Lemma 5, �(v) � 3. If �(v) = 3, then by Lemmas 6, 7, and 8, 2 � k � 2r − 4. By 
Lemma 10.1), there exists a vertex z 2 V (G) − V (H) such that z is adjacent to both h1 

and h2r. Furthermore, z is adjacent to only these two vertices in H, and z is not adjacent 
to v. In this case, we frst prove the following claim. 
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Claim. v is adjacent to four vertices in H. By way of contradiction, assume v 
is not adjacent to at least one of hk+1 or hk+2. Suppose k is even. Then the set 
{h1, h3, ..., hk−1, hk+1, hk+4, ..., h2r} [ {v} (in case v is not adjacent to hk+1), or the set 
{h1, h3, ..., hk−1, hk+2, hk+4, ..., h2r} [ {v} (in case v is not adjacent to hk+2) is an inde-
pendent set of order r + 1, a contradiction. On the other hand, if k is odd, then the set 
{h2, h4, ..., hk−1, hk+1, hk+4, ..., h2r−1} [ {v, z} (in case v is not adjacent to hk+1), or the 
set {h2, h4, ..., hk−1, hk+2, hk+4, ..., h2r−1} [ {v, z} (in case v is not adjacent to hk+2) is an 
independent set of order r + 1, a contradiction. Thus, the claim is correct. 

Now, if v has four neighbors in H, then since �(v) = 3, the four neighbors are clearly 
consecutive. Suppose v has three neighbors in H. Then by the claim, �(v) = 2, otherwise 
v would be forced to have four neighbors in H. Thus, if v has three neighbors in H, they 
must be consecutive. Last, suppose that vertex v has two neighbors in H. By the claim, 
�(v) � 2, otherwise v would be forced to have four neighbors in H. If  �(v) = 2, then v 
is adjacent to hk and hk+2. In this case, we have a contradiction, since when k is even 
{h1, h3, ..., hk−1, hk+1, hk+3, ..., h2r−1}[{v} is an independent set of order r +1, and when 
k is odd {h2, h4, ..., hk−1, hk+1, hk+3, ..., h2r} [ {v} is an independent set of order r + 1.  
Thus, �(v) = 1, and the two neighbors of v are consecutive. � 

Lemma 12. Let G be a graph with r � 3 such that = r. Suppose H = P (2r). Moreover, 
suppose v is a vertex such that v 2 V (G)−V (H) and the neighbors of v include h1. Then 
either: 

1) v is adjacent to exactly two or exactly three consecutive vertices in H; or  
2) v is adjacent to exactly h1, h2, h3, and h4 in H; or  
3) v is adjacent to h1, h3, and h4; or  
4) r = 3  and v is adjacent to exactly h1, h2, h5, and h6 in H; or  
5) r = 3  and v is adjacent to exactly h1, h4, and h5 in H. 

Proof. First, suppose that �(v) = 1. Then v is clearly adjacent to exactly two consecutive 
vertices in H (namely h1 and h2r, or  h1 and h2). 

Next, suppose that �(v) = 2 but v is not adjacent to three consecutive vertices in H. 
Let hm and hn be the two vertices in H adjacent to v so that �(hm, hn) = 2, and let c be 
the vertex in H between hm and hn (consecutive to both of them) which is not adjacent 
to v. Since r � 3, by Lemma 6, v cannot be adjacent to any other vertices of H other 
than hm and hn. We can form an independent set with + 1 vertices by including v with 
a maximum independent set in H containing c but not containing either hm or hn. This 
is a contradiction. Thus, if �(v) = 2,  v is adjacent to three consecutive vertices in H. 

Last, suppose that �(v) = 3. Then v cannot be adjacent to exactly two or exactly three 
consecutive vertices in H. We consider the cases r � 4 and r = 3 separately. If r � 4, 
by Lemma 6, we know that the neighbors of v in H must be a subset of {h1, h2, h3, h4}. 
Now, v must be adjacent to h4 (because �(v) = 3), and it must also be adjacent to 
h1 by hypothesis. If v is adjacent to each of the vertices {h1, h2, h3, h4}, we are done. 
Therefore, suppose that v is not adjacent to h3. Now, by Lemma 10.2), there exists 
a vertex z 2 V (G) − V (H) such that z is adjacent to h1 and at least one of h2 and 
h2r. Furthermore, z is adjacent to only these vertices in H, and z is not adjacent to 
v. Consequently, we can form an independent set including v, z, and h3, together with 
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{h5, h7, ..., h2r−1}, which has + 1 vertices, a contradiction. Thus, v must be adjacent to 
h1, h3, and h4, the desired result. 

On the other hand, if r = 3, then the neighbors of v in H must be a subset of 
{h1, h2, h3, h4}, {h1, h4, h5, h6}, or  {h1, h2, h5, h6}. If these neighbors are a subset of 
{h1, h2, h3, h4}, we can argue as in the preceding case to get the desired result. If they 
are a subset of {h1, h4, h5, h6}, then by Lemma 8, v must be adjacent to exactly h1, h4, 
and h5 in H. Finally, if they are a subset of {h1, h2, h5, h6}, then by Lemma 7, v must be 
adjacent to exactly h1, h2, h5, and h6 in H. � 

Lemma 13. Let G be a graph with r � 3 such that = r. Suppose H = P (2r). Moreover, 
suppose v is a vertex such that v 2 V (G)−V (H) and the neighbors of v include h2r. Then 
either: 

1) v is adjacent to exactly two or exactly three consecutive vertices in H; or  
2) v is adjacent to exactly h2r−3, h2r−2, h2r−1, and h2r in H; or  
3) v is adjacent to exactly h2r−3, h2r−2, and h2r in H; or  
4) r = 3  and v is adjacent to exactly h1, h2, h5, and h6 in H; or  
5) r = 3  and v is adjacent to exactly h2, h3, and h6 in H. 

Proof. The proof is symmetric to the proof of Lemma 12. � 

Lemma 14. Let G be a graph with r � 3 such that = r. Then there exists a subgraph 
H of G such that either H = P (2r) or H = C(2r), and if u, v 2 V (G) − V (H) is a pair 
of degenerate vertices with respect to H, u is adjacent to v. 

Proof. If r � 5 and G contains an induced C(2r) subgraph, let H be this subgraph. Then 
G and H satisfy Lemma 3. If r � 5 and G does not contain an induced C(2r) subgraph, 
let H be the induced P (2r) subgraph implied by Lemma 1. If 3 � r � 4 and G contains 
an induced C(2r) subgraph that satisfes Lemma 4, let H be this subgraph. If 3 � r � 4 
and G does not contain an induced C(2r) subgraph that satisfes Lemma 4, let H be the 
induced P (2r) subgraph implied by Lemma 4. 

If H = C(2r), then G and H satisfy either Lemma 3 or Lemma 4. Thus, the union of 
the neighbors of u and v in H is three or less consecutive vertices. Let X be this union. 
Then the subgraph induced by V (H)− X has an independent set of size r− 1. Thus if u 
and v are not adjacent, G has an independent set of size r + 1, a contradiction. 

Therefore, assume H = P (2r). As in the preceding case, if the union X of the neighbors 
of u and v in H is three or less consecutive vertices and u and v are not adjacent, then 
G has an independent set of size r + 1, a contradiction. On the other hand, suppose X 
is not three or less consecutive vertices. We consider four cases, which correspond to the 
four remaining clauses b) through e) in the defnition of degenerate vertices. 

Case 1: X is four or less consecutive vertices including neither h1 nor h2r, and k = k 0 . 
By our suppositions and Lemma 5, we have that 1 � �(u), �(v) � 3, and either �(u) = 3  
or �(v) = 3. Otherwise, X is three or less consecutive vertices. Assume �(u) = 3. In 
addition, by the defnition of k, we have k < 2r − 3. Then by Lemma 10.1), there exists 
a vertex z 2 V (G) − V (H) such that z is adjacent to both h1 and h2r. Furthermore, 
z is adjacent to only these vertices in H, and z is adjacent to neither u nor v. Since 
�(u), �(v) � 3, the neighbors of u and v in H are contained in {hk, hk+1, hk+2, hk+3}. 



Thus, if u and v are not adjacent, then we can choose and independent set of size r + 1  
from the vertices V (H) − X, u, v, and z, a contradiction. 

Case 2: X is a subset of {h1, h2, h3, h4}, k = k 0 = 1, and both u and v are adjacent 
to h4. By Lemma 10.2), there exists a vertex z 2 V (G) − V (H) such that z is adjacent 
to h1 and at least one of h2 and h2r. Furthermore, z is adjacent to only these vertices 
in H, and z is adjacent to neither u nor v. Thus, if u and v are not adjacent, then we 
can choose and independent set of size r + 1 from the vertices V (H) − X, u, v, and z, a  
contradiction. 

Case 3: X is a subset of {h2r−3, h2r−2, h2r−1, h2r}, k = k 0 = 2r− 3, and either �(u) = 3  
or �(v) = 3. By Lemma 10.3), there exists a vertex z 2 V (G) − V (H) such that z is 
adjacent to h2r and at least one of h1 or h2r−1. Furthermore, z is adjacent to only these 
vertices in H, and z is adjacent to neither u nor v. Thus, if u and v are not adjacent, 
then we can choose and independent set of size r + 1 from the vertices V (H) − X, u, v, 
and z, a contradiction. 

Case 4: The neighbors of u and v on H are identical. By our suppositions and Lemma 
5, we have that �(u) =  �(v) = 3. If 2 � k � 2r − 4, then by Lemma 10.1), there exists 
a vertex z 2 V (G) − V (H) such that z is adjacent to both h1 and h2r. Furthermore, 
z is adjacent to only these two vertices in H, and z is adjacent to neither u nor v. If  
r � 4, then by Lemma 6, X is four consecutive vertices contained in {h2, h3, . . . , h2r−1}. 
If r = 3, by Lemmas 6, 7, 8, and 9, X is four consecutive vertices contained in either 
{h2, h3, . . . , h5=2r−1} or {h1, h2, h3, . . . , h6}. If X is four consecutive vertices contained in 
{h2, h3, . . . , h2r−1}, and u and v are not adjacent, then we can choose and independent 
set of size r + 1 from the vertices V (H) − X, u, v, and z, a contradiction. If r = 3 and 
X is contained in {h1, h2, h3, . . . , h6}, then u and v are adjacent by Lemma 9. 

Likewise, if k = 1 and r � 4, then by Lemma 6, X is contained in {h1, h2, h3, h4}. Of  
course, even if r = 3, it may still be the case that X is contained in {h1, h2, h3, h4}. If this 
is true, since �(u) = �(v) = 3 implies each of u and v is adjacent to h4, by Lemma 10.2) 
there exists a vertex z 2 V (G) − V (H) such that z is adjacent to h1 and at least one of 
h2 and h2r. Furthermore, z is adjacent to only these vertices in H, and z is adjacent to 
neither u nor v. Thus if u and v are not adjacent, then we can choose and independent 
set of size r + 1 from the vertices V (H) − X, u, v, and z, a contradiction. Therefore, 
suppose r = 3, but X is not contained in {h1, h2, h3, h4}. By Lemma 6, X is contained 
in either {h1, h2, h5, h6}, {h1, h4, h5, h6}, or  {h1, h2, h3, h6}. In any event, we can apply 
Lemmas 7, 8, and 9 to deduce that u and v are adjacent. 

If k = 2r − 3, X is contained in {h2r−3, h2r−2, h2r−1, h2r}. Since �(u) = �(v) = 3, then 
by Lemma 10.3), there exists a vertex z 2 V (G)−V (H) such that z is adjacent to h2r and 
at least one of h1 or h2r−1. Furthermore, z is adjacent to only these vertices on H, and z 
is adjacent to neither u nor v. Thus if u and v are not adjacent, then we can choose an 
independent set of size r + 1 from the vertices V (H) − X, u, v, and z, a contradiction. 

Finally, if k > 2r − 3, X is three or less consecutive vertices, which we already showed 
implies u is adjacent to v. � 

https://h1,h2,h3,h4}.Of
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Open Problems 

Analogous to the defnitions of path number and bipartite number, the tree number 
of a graph G is the maximum order of an induced tree subgraph. Likewise, the induced 
circumference of G is the maximum order of an induced cycle subgraph. These invariants 
are denoted by t = t(G) and Cind = Cind(G), respectively. Let � = �(G) be the connec-
tivity of G. The following conjecture of Graÿti.pc interested us because of its similarity 
to the well-known Erdös-Chvátal Theorem, which states that if � � − 1 for a graph G, 
then the graph has a Hamiltonian path. 

Conjecture 3. (Graÿti.pc 199) Let G be a graph. If � � t − 2, then G contains a 
Hamiltonian path. 

Let d1, d2, . . . , dn be the degree sequence of a graph G arranged in non-decreasing order. 
The annihilation number of G, A = A(G), is the largest integer k such that the sum of 
the frst k terms of the sequence, d1 + d2 + . . . + dk , is at most half the sum of the entire 
sequence (i.e. the size of G). This invariant was introduced in [13], where it was shown to 
be an upper bound on the independence number of the graph. The defnition presented 
here is due to Fajtlowicz, although R. Pepper showed it was equivalent to the original 
defnition presented in [13]. 

Conjecture 4. (Graÿti.pc 205) Let G be a graph. If Cind � 2(A − 1), then G contains 
a Hamiltonian path. 

Conjecture 5. (Graÿti.pc 201) Let G be a graph. If p = n − d2 + 1, then G contains a 
Hamiltonian path. 

For a graph G, let L = L(G) denote the maximum number of leaves of a spanning tree 
of G. We call this invariant the leaf number of G. The following conjecture of Graÿti.pc 
related to L is reminiscent of Dirac’s famous suÿcient conditions for a graph to contain 
a Hamiltonian cycle or path. Let � = �(G) be the minimum degree of G. 

L + 1  
Conjecture 6. (Graÿti.pc 190) Let G be a graph. If � � , then G contains a 

2 
Hamiltonian path. 
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	Theorem 2. Let G be a graph. Then . r and b. 2r. 
	Proof. The frst inequality is an obvious consequence of Theorem 1. To show b . 2r, suppose Gisacounterexample. Let P be aninducedpathoforderatleast2r− 1. Now P musthaveorderexactly2r− 1andb=2r− 1,orwearefnished. Colortheverticesof P redand green. Sotheendpoints of P have thesame color. Buteach vertexv outside of P must be adjacent to both a red and green vertex of P,or b . 2r and G is not a counterexample. ThusvmustbeadjacenttoaninteriorvertexofP. Butthisimpliesthe radiusof G isatmost r− 1,again acontradict
	Althoughitiseasytofndgraphs(other thancliques)forwhichthesetwo inequalities arebest possible,theproblemofcharacterizingthe caseofequalityfor eachlowerbound hasapparentlyremainedunresolved. Ofparticularinteresthasbeencharacterizingthose graphswhere =r (see[11],[12]). Themaingoalofthispaper isthereforetoprovethe followingTheorem3,whichshedssomelightonthestructureoftheseextremalgraphsas well as supplying a new suÿcient condition for a graph to contain a Hamiltonian path. We defertheproof ofthistheoremtothenext
	Theorem 3. (Main Theorem) Let G be a graph such that = r. Then G contains a Hamiltonian path. 
	One interesting aspect of this theorem isthat itapplies to various familiesof graphs, such as even paths and cycles, for which many of the classical suÿcient conditions for Hamiltonian paths do not apply. Let us discuss the genesis of this theorem. Graÿti, a computer program that makes conjectures, was written by S. Fajtlowicz and dates from the mid-1980’s. , a program that makes graph-theoretical conjectures utilizing conjecture-making strategies similar to those found in Graÿti, was written by E.DeLaVi˜na
	Graÿti.pc

	[2]and [3];itsconjecturescan be found in[5]. Anumbered, annotated listingof several hundred ofGraÿti’sconjectures canbe foundin[9]. have correctlyconjectured a number of new bounds for several well studied graph invariants; bibliographicalinformationonresultingpapers canbe foundin[4]. 
	BothGraÿtiandGraÿti.pc 

	employs two main strategies for generating conjectures. The frst of these isknown as the“Dalmatian heuristic”(due to Fajtlowicz) and generates necessaryconditionsfor a particular classof graphs P, as chosen by the user(frequently, thisclass is merelyallsimple,connectedgraphs). Dalmatianconjecturesareoftheform 
	Graÿti.pc 
	-

	If a graph belongs to class P, then “fxed expression . expression 2” 
	wheretheexpressionsontheleftandrightarecomposedofgraphinvariantsandconstants combined by algebraicoperations. Thefxedexpressionontheleftisalso chosen by the user,andmayconsistofjustasinglegraphinvariant. Atpresent,Graÿti.pccancompute about 500 invariants and 25 operators. generates expressions of 35 various types (as determined by the arity of the operators in the expression). Expressions may containseveralterms. Di.erentexpressionsaregeneratedbyvaryingtermsandoperators overtheinvariant setandavailableopera
	Graÿti.pc 

	Recently, the authors have been experimenting with a new strategy for generating conjectures, called the “Sophie heuristic” (due to DeLaVi˜na and Waller). Graÿti.pc’s SophieheuristicgeneratessuÿcientconditionsforaparticularclassofgraphsP,aschosen by theuser. Sophieconjectures areoftheform 
	If “expression 1 . expression 2” for a graph, then the graph belongs to class P. 
	Sophiegeneratesconjectures by utilizingtwo databases of graphs and theircomputed invariants. Thebackground databasecomprisesabouttwomillionsmallconnectedgraphs (most generated by B. McKay’s geng program), and the top database is a small subset ofthebackground database. Let P be aclassof graphs. The target set isthecollection of graphs in the top database that belong to class P. The cover set C of a relation between expressions is the set of graphs in the top database for which the relation is true. TheSophi
	P. A candidate conjecture is accepted if its cover set includes graphs not included in any of the cover sets of previouslyacceptedconjectures, and ifit isplausible versus the background database. Sophie’s goal is to generate a “minimal” list of conjectures that “covers” allgraphsinthetargetset. Ifthisgoalismet,thenSophietriestoextend(i.e. addgraphsto) thetargetsetandtopdatabase, andcontinuestoward thegoal. 
	As one of our initial test beds for Sophie, we chose the class P of simple, connected graphscontainingaHamiltonianpath. Thistestresultedinacollectionof34conjectures, several of which have now been either proven or refuted. We will mention a few of our favorite open conjectures from this list in the last section. The full list of Sophie conjecturesisavailable at[5]. Theconjecturethat resultedinTheorem3 was contained onanearlylistofSophieconjectures, buteventuallywas replacedby thefollowing more generalconjec
	Conjecture 1. (196)Let G be a graph. If b=2r, then G contains a Hamiltonian path. 
	Graÿti.pc 
	-

	This conjecture is a generalization of Theorem 3 because since . b/2, Theorem 2 impliesif =r,thenb=2raswell. SometimeafterSophiegeneratedtheseconjectures, wenoticedthat Theorem3isalsoacorollaryofthefollowingopen conjectureofGraÿti. 
	Figure
	Figure 1. The7-ciliateC(8,3) 
	Conjecture 2. (Graÿti [7])Let G be a graph. Then 
	ˆ− 1 
	. r+ . 
	2 Thereexistatleasttwodi.erentgeneralizationsofTheorem1,providedindependently by Fajtlowicz in([11],Theorem 2),and G. Bacs´oand Z.Tuza in([1],Theorem1). The 1988resultofFajtlowiczplaysakeyroleintheproofofTheorem3. Fajtlowiczprovesthis result in the context of characterizing radius-critical graphs, which are graphs in which everyproper inducedconnectedsubgraph has radiusstrictlylessthan theparent graph. LetP(n)andC(n)denotethepathonnverticesandthecycleonnvertices,respectively. LetC(p,q)denotethegraphobtained
	Theorem 4. (Fajtlowicz [11])Let G be a graph with r. 1. Then G contains an r-ciliate as an induced subgraph. 
	Finally,anotherresultofFajtlowicz(alsoconjecturedbyGraÿti)willallowustosomewhatsimplifythe proof ofTheorem3. 
	-

	Theorem 5. (Fajtlowicz [9])LetGbe agraphwith =2. Then Gcontains aHamiltonian path. 
	Proof of Main Theorem 
	Theorem 3. Let G be a graph such that =r. Then G contains a Hamiltonian path. 
	Proof.Thecase =r=1istrivial. Thus, Theorem5implieswecanlimitourattention tothecase =r. 3. (We shouldnotethatFajtlowiczhascommunicatedtousashort, independent proof of the case = r = 3.) The structure of r-ciliates and Theorem 4 implythefollowing Lemma1. Lemmaproofs aregiven inthenextsection. 
	Lemma 1. Let G be a graph with r. 1 such that =r. Then G contains either P(2r) or C(2r)as an induced subgraph. Moreover, if we let H denote an induced P(2r)or C(2r) subgraph, then every vertex of G is either contained in H or is adjacent to H. 
	Lemma 2. Let G be a graph such that = r . 1. Then for each vertex v such that v2 V(G)− V(H), v is adjacent to at least two vertices in H. 
	Figure
	Figure 2. =r=3 
	Figure
	Figure 3. =r=4 
	Enumerate the vertices of Has h,h,h,...,hr; clockwise if His a cycle, and left-i and hj be two distinct vertices on H. Then we defne .(hi,hj )=min{|j− i|,2r−|j− i|}. (Notethatif Hisacycle,then .(hi,hj )isjustthe i and hj withrespect to H.If Hisapath,imagine the and hr. Then .(hi,hj ) is just the shortest-path distance between hi and hj with respect to F.) Moreover, we say that hi and hj are consecutive provided .(hi,hj )=1. (Hence, hand hr areconsecutive.) Now suppose v isavertexsuch that v2 V(G)− V(H). The
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	to-right if H is a path. Let h
	shortest-path distancebetween h
	cycle F formed from Hby joining h
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	In addition to assuming = r, if we assume r. 5, then we can show the following Lemma3. 
	Lemma 3. Let Gbe a graph with r . 5 such that = r.If H = C(2r), then for each vertex vsuch that v2 V(G)− V(H), vis adjacent to exactly two or exactly three consecutive vertices in H. 
	Thereadermaybe curiousabout thenecessityoftheconditionr. 5inthestatement of Lemma 3. The graphs in Figures 2 and 3 show that for small values of r, Lemma 3 may not hold. Each graph contains an induced C(2r) subgraph and a vertex vnot on thiscycleadjacent tofourverticesof thecycle. 
	Lemma 4. Let Gbe a graph with 3. r. 4 such that =r. Then either: 
	1) Gcontains H = C(2r) as an induced subgraph, and for each vertex vsuch that v2 V(G)− V(H), vis adjacent to exactly two or exactly three consecutive vertices in H, or 
	2) Gcontains P(2r) as an induced subgraph. 
	ThefollowingsequenceoflemmasanddefnitionsculminatesinLemma14,whichthen allows ustostatean algorithmfor constructingaHamiltonianpathinagraph Gwhere 
	=r. 3. Lemmas11,12,and13areanalogoustoLemma3inthecasewhenH=P(2r). 
	Figure
	Figure 4. Lemma7 
	Figure
	Figure 5. Lemma8 
	Unlike when r. 5 and H = C(2r), vertices not in H may be adjacent to up to four vertices in Hwhen H= P(2r). Certaincomplicationsarisewhen r=3, or when there exist vertices not in H that are adjacent to the endpoints of H. These complications necessitateanumber ofmostlytechnicallemmas,inparticularLemmas6through9. 
	Lemma 5. Let Gbe a graph with r. 3 such that =r.If H=P(2r) and vis a vertex such that v2 V(G)− V(H), then 1. .(v). 3. 
	Lemma 6. Let Gbe a graph with r. 3 such that = r. Suppose H= P(2r).Let v be a vertex such that v2 V(G)− V(H). Then the neighbors of vin Hmust be a subset of four consecutive vertices. Moreover, if r. 4 and .(v)=3, the neighbors of vin H cannot be a subset of {h,hr−2,hr−1,hr}, {h,h,hr−1,hr},or {h,h,h,hr}. 
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	Lemma 7. Let Gbe a graph with =r=3. Suppose H=P(6).Let Uˆ V(G)− V(H) be a collection of vertices such that for every u2 U, .(u)=3 and the neighbors of uin H are a subset of {h,h,h,h}. Then U must induce a clique in G, and each vertex u2 Umust be adjacent to each of the vertices {h,h,h,h}. Moreover, if there exists a vertex v2 V(G)− V(H) adjacent to hsuch that the neighbors of vin Hare a subset of h,h,h}, then vis adjacent to each vertex of U. (See Figure 4.) 
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	Lemma 8. Let Gbe a graph with =r=3. Suppose H=P(6).Let Uˆ V(G)− V(H) be a collection of vertices such that for every u2 U, .(u)=3 and the neighbors of uin H are a subset of {h,h,h,h}. Then U must induce a clique in G, and each vertex u2 U must be adjacent to exactly the set {h,h,h} in H. Moreover, there exists a vertex v2 V(G) − V(H) adjacent to exactly the set {h,h,h} in H, and each such vertex vis adjacent to each vertex of U. (See Figure 5.) 
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	Figure
	Figure 6. Lemma9 
	Figure
	Figure 7. Lemma10.1) 
	Lemma 9. Let Gbe a graph with =r=3. Suppose H=P(6).Let Uˆ V(G)− V(H) be a collection of vertices such that for every u2 U, .(u)=3 and the neighbors of uin H are a subset of {h,h,h,h}. Then U must induce a clique in G, and each vertex u2 U must be adjacent to exactly the set {h,h,h} in H. Moreover, there exists a vertex v2 V(G) − V(H) adjacent to exactly the set {h,h,h} in H, and each such vertex vis adjacent to each vertex of U. (See Figure 6.) 
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	Lemma 10. Let Gbe a graph with r. 3 such that =r. Assume H=P(2r). Suppose Uis a collection of vertices such that Uˆ V(G)− V(H) and k= min{j : u2 U and uis adjacent to hj }. Moreover, suppose for every u2 U that uis adjacent to hk, and .(v)=3 for some v2 U. Then: 
	1) If 2. k. 2r−4, then there exists a vertex z2 V(G)−V(H)such that zis adjacent to both hand hr. Furthermore, zis adjacent to only these two vertices in H, and zis not adjacent to any vertex u2 U. (See Figure 7.) 
	1 
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	2) and the neighbors of uin Hare a subset of {h,h,h,h}, then there exists a vertex z2 V(G)− V(H) such that z is adjacent to hand at least one of hand hr. Furthermore, zis adjacent to only these vertices in H, and zis not adjacent to any vertex u2 U. (See Figure 8.) 
	If k=1 and for every vertex u
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	U, uis adjacent to h
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	3) If k=2r− 3 and for every vertex u2 U, the neighbors of uin H are a subset of {hr−3,hr−2,hr−1,hr}, then there exists a vertex z2 V(G)− V(H) such that zis r and at least one of hor hr−1. Furthermore, zis adjacent to only these vertices in H, and zis not adjacent to any vertex u2 U. (See Figure 9.) 
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	Lemma 11. Let Gbe agraphwith r. 3suchthat =r. Suppose H=P(2r). Moreover, suppose vis a vertex such that v2 V(G)− V(H) and the neighbors of vinclude neither hnor hr. Then vis adjacent to exactly two, exactly three, or exactly four consecutive vertices in H. 
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	Figure
	Figure 8. Lemma10.2) 
	Figure
	Figure 9. Lemma10.3) 
	Lemma 12. Let Gbe agraphwith r. 3suchthat =r. Suppose H =P(2r). Moreover, suppose v is a vertex such that v2 V(G)− V(H) and the neighbors of v include h. Then either: 
	1

	1) v is adjacent to exactly two or exactly three consecutive vertices in H;or 
	2) , h, h, and hin H;or 
	v is adjacent to exactly h
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	3) , h, and h;or 
	v is adjacent to h
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	4) , h, h, and hin H;or 
	r=3 and v is adjacent to exactly h
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	5) , h, and hin H. 
	r=3 and v is adjacent to exactly h
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	Lemma 13. Let Gbe agraphwith r. 3suchthat =r. Suppose H =P(2r). Moreover, suppose vis a vertex such that v2 V(G)−V(H)and the neighbors of vinclude hr. Then either: 
	2

	1) v is adjacent to exactly two or exactly three consecutive vertices in H;or 
	2) r−3, hr−2, hr−1, and hr in H;or 
	v is adjacent to exactly h
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	3) r−3, hr−2, and hr in H;or 
	v is adjacent to exactly h
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	4) , h, h, and hin H;or 
	r=3 and v is adjacent to exactly h
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	5) , h, and hin H. 
	r=3 and v is adjacent to exactly h
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	LetGbeagraphwithr. 1. SupposeGcontainsaninducedsubgraphHsuchthatH = P(2r)or H =C(2r). Suppose uand v areapairofverticeswhere u,v2 V(G)− V(H). Let k be thesmallestintegersuch that uisadjacent to hk and kbe thesmallestinteger such that v isadjacent to hk . Then u and v are said to be degenerate (with respect to 
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	H)ifeither: 
	a)theunionoftheirneighbors in H isthreeorlessconsecutivevertices;or 
	b) 
	b) 
	b) 
	k = k, and the union of their neighbors in H is four or less consecutive vertices nor hr;or 
	0 
	includingneither h
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	c) 
	c) 
	k= k= 1, both are adjacent to h, and the union of their neighbors in H is a subsetof {h,h,h,h};or 
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	d) 
	d) 
	k=k=2r− 3,either.(u)=3 or .(v)=3,andtheunionoftheirneighbors in H isasubsetof {hr−3,hr−2,hr−1,hr};or 
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	e)theirneighbors in Hareidentical. 
	Lemma 14. Let Gbe a graph with r. 3 such that =r. Then there exists a subgraph Hof Gsuch that either H=P(2r) or H=C(2r), and if u,v2 V(G)− V(H) is a pair of degenerate vertices with respect to H, uis adjacent to v. 
	We can now complete the proof of the main theorem. Let us repeat the choice of the induced subgraph Has described in the proof of Lemma 14 (below). If r. 5 and Gcontains an induced C(2r) subgraph, let Hbe this subgraph. Then Gand Hsatisfy Lemma 3. If r. 5 and Gdoes not contain an induced C(2r) subgraph, let Hbe the induced P(2r)subgraphimplied by Lemma1. If3 . r. 4 and Gcontains an induced C(2r)subgraph thatsatisfesLemma4,letHbethissubgraph. If3. r. 4and Gdoes not contain an induced C(2r) subgraph that sati
	For each k,1. k. 2r− 3,letXk denotethesetofverticesin V(G)− V(H)thatare adjacenttohk butwhoseneighborsinHareasubsetof{hk,hk+1,hk+2,hk+3}. Moreover, letXr−2 denotethesetofverticesinV(G)− V(H)thatareadjacenttohr−2 butwhose neighbors in H are a subset of hr−2,hr−1,hr}; let Xr−1 denote the set of vertices in V(G)− V(H) that are adjacent to hr−1 but whose neighbors in H are a subset of hr−1,hr,h};andlet Xr denotethesetofverticesin V(G)− V(H)thatareadjacent to hr butwhoseneighbors inHareasubsetof {hr,h,h}. Therea
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	be theinitialvertex of P.If Xis empty,thenweaddhtoPandproceed. Otherwise,assumethereexistsavertexv2 X, . WenextaddvtoP,andbecauseXinduces a cliquein Ginthiscase,we caninturnadd each additional vertexof Xto P as well. Assume uis the last vertex of Xadded to P in this fashion. By our choice of Hand Lemma3, umust be adjacent to h. Hencewe canadd hto Pandcontinue. 
	Step1) Consider frst thecase H= C(2r). Let h
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	1
	whichbydefnitionmustbeadjacenttoh
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	Next, consider the case H = P(2r). If Xis empty, let hbe the initial vertex of 
	1 
	1 

	P. Then we add hto P and proceed. Otherwise, let Y be those vertices y2 Xsuch that .(y) = 3, and let Zbe those vertices z2 Xsuch that .(z) . 2. By Lemma 12, Y[ Z= X.If Y is empty, let hbe the initialvertex of P. Otherwise, assume there existsavertexy2 Y. Letybetheinitialvertexof P,andbecauseY inducesacliquein Gby Lemma14,wecaninturnaddeachadditionalvertexof Y to Paswell. Assumeu isthelastvertexof Y addedto Pinthisfashion. Since Y ˆ X, umust be adjacent to 
	P. Then we add hto P and proceed. Otherwise, let Y be those vertices y2 Xsuch that .(y) = 3, and let Zbe those vertices z2 Xsuch that .(z) . 2. By Lemma 12, Y[ Z= X.If Y is empty, let hbe the initialvertex of P. Otherwise, assume there existsavertexy2 Y. Letybetheinitialvertexof P,andbecauseY inducesacliquein Gby Lemma14,wecaninturnaddeachadditionalvertexof Y to Paswell. Assumeu isthelastvertexof Y addedto Pinthisfashion. Since Y ˆ X, umust be adjacent to 
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	h. Hencewe cannow add hto P. Inany event,hisaddedto P. Next,ifZisempty, thenwe add hto Pand proceed. Otherwise,assumethereexistsa vertexz2 Zˆ X. AddztoP,andbecause ZinducesacliqueinGbyLemma14,wecaninturnaddeach additionalvertexof Zto Paswell. Assume wisthelastvertexof Zaddedto Pinthis fashion. Since .(w) . 2, wmust be adjacent to hby Lemma12. Hencewe canadd hto Pandcontinue. 
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	Step 2) Now suppose we have constructed a path P such that the terminalvertex of Pis hj (1 <j<2r− 1); each vertexh,h,...,hj−1 iscontained in P; and each vertex of X[ X[ X[ ...[ Xj−1 is contained in P. Moreover, suppose these are the only verticescontainedin P.If Xj isempty,thenweadd hj+1 to Pandcontinue. Otherwise, assumethereexistsavertexv2 Xj ,whichbydefnitionmustbeadjacenttohj . Wenext add vtoP(v/2 X[ X[ X[ ...[ Xj−1 assuresthat visnotalreadycontainedon P). BecauseXj inducesacliquein G,we caninturnaddeac
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	Step3)Nowsuppose wehaveconstructedapath Psuchthattheterminalvertexof P ishr−1;eachvertexh,h,...,hr−2 iscontainedinP;andeachvertexofX[ X[ X[ ...[ Xr−2 is contained in P. Moreover, suppose thesearetheonlyvertices contained in P.If Xr−1 is empty, then we add hr to P and continue. Otherwise, assume there existsa vertex v2 Xr−1,which by defnitionmust be adjacent to hr−1. Consider frst thecases H=C(2r),or r. 4and H=P(2r). We nextadd vto P,andbecause Xr−1 induces a cliquein Gin these cases by Lemma 14, we can in t
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	Next,considerthecase r=3and H=P(6). If Xr−1 isempty,thenwe add hr to P andproceed. Otherwise,letY bethoseverticesinXr−1 thatareadjacenttoexactlyh, h, and hin H, and let Zbe those vertices in Xr−1 such that .(z) . 2. By Lemmas 11, 12, and 13, Y[ Z= Y is not empty, assume y2 Y. By Lemma 8, there exists z2 Zalso. Add yto P, and because Y induces a cliquein Gby Lemma 14, we caninturnaddeach additionalvertexof Y to Paswell. Assume uisthelastvertexof Y addedto Pinthisfashion. ByLemma8, umustbe adjacentto z. Hence
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	by Lemmas11,12, and13. Hencewe canadd h
	2

	Step4)Nowsuppose wehaveconstructedapath Psuchthattheterminalvertexof P is hr;each vertexh,h,...,hr−1 iscontained in P;andeach vertexof X[ X[ X[...[ Xr−1 iscontained inP. Moreover,suppose thesearetheonlyverticescontainedin P.IfXr isempty,thenwearefnished. Otherwise,assumethereexistsavertexv2 Xr. Consider frst the cases H= C(2r), or r. 4 and H= P(2r). By defnition, vmust be r in these cases. We next add vto P, and because Xr induces a clique 
	Step4)Nowsuppose wehaveconstructedapath Psuchthattheterminalvertexof P is hr;each vertexh,h,...,hr−1 iscontained in P;andeach vertexof X[ X[ X[...[ Xr−1 iscontained inP. Moreover,suppose thesearetheonlyverticescontainedin P.IfXr isempty,thenwearefnished. Otherwise,assumethereexistsavertexv2 Xr. Consider frst the cases H= C(2r), or r. 4 and H= P(2r). By defnition, vmust be r in these cases. We next add vto P, and because Xr induces a clique 
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	in Gby Lemma14, we caninturn add each additionalvertex of Xr to Pas well. The theoremnow follows. 
	2


	Next,consider the case r=3 and H= P(6). If Xr is empty, then we add hr to P andarefnishedasbefore. Otherwise,letYbe thoseverticesin Xr thatareadjacentto exactlyh,h,h,andhinH;letZbethoseverticesinXr suchthat.(z). 2;andlet Abe thoseverticesin Xr thatareadjacent toexactly h, h,and hin H. ByLemmas 11,12, and13, Y[ Z[ A=Xr. We considerthreecases. 
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	Case 1: Ais empty. If Yis not empty, assume y2 Y. Add yto P, and because Y induces a cliquein Gby Lemma 14, we can in turn add each additional vertex of Yto Pas well. Assume uis the last vertex of Yadded to Pin this fashion. If Zis empty, thenwe arefnished. Otherwise,suppose z2 Z. ByLemma7, umust be adjacent to z. Hencewe cannow add zto P.If Yisempty,then Zisnotempty,inwhichcaseby the defnitionof Xr−1,wecanaddztoP. Inanyevent,zisaddedtoP. BecauseZinduces acliquein GbyLemma14,wecaninturnaddeach additionalver
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	Case 2: Ais not empty, but Y is empty. By Lemma 9, Zcannot be empty, and moreover, there exists z2 Zsuch that zis adjacent to each vertex of A.If Zcontains atleasttwo vertices,let z2 Zbe somevertex otherthan z.If Zconsistsofonly z,let z= z. By defnition, zmust be adjacent to hr. Hencewe cannow add zto P, and becauseZinducesacliqueinGbyLemma14,wecaninturnaddeachadditionalvertex of Zto Pinsuchawaythat zisthelastvertexaddedto Pinthisfashion. Nowassume a2 A. Since aisadjacent to z,we cannextadd ato P. Since Ain
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	Case 3: Ais not empty, and Yis not empty. ByLemma 9, Zcannot be empty, and moreover, there exists z2 Zsuch that zis adjacent to each vertex of A.If Zcontains atleasttwo vertices,let z2 Zbe somevertex otherthan z.If Zconsistsofonly z,let z= z. Assume y2 Yand a2 A. Add yto P, and because Yinduces a cliquein G by Lemma14,we caninturnaddeachadditionalvertexof Yto Paswell. Assume uis thelastvertexof Yaddedto Pinthisfashion. ByLemma7, umust be adjacent to z. Hencewe can now add zto P, and because Zinduces a cliqu
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	Thetheoremagainfollows. . 
	Proofs of Lemmas 
	Lemma 1. Let Gbe a graph with r. 1 such that =r. Then Gcontains either P(2r) or C(2r)as an induced subgraph. Moreover, if we let Hdenote an induced P(2r)or C(2r) subgraph, then every vertex of Gis either contained in Hor is adjacent to H. 
	Proof. Let Hbe an induced r-ciliate guaranteed by Theorem 4. If His neither P(2r) nor C(2r), then considering the defnition of r-ciliates, (H) >r. Since His induced, 
	(G) . (H) >r,a contradiction. Hence H= P(2r)or H= C(2r). Now suppose vis 
	(G) . (H) >r,a contradiction. Hence H= P(2r)or H= C(2r). Now suppose vis 
	avertex of Gnot contained in H.If visnotadjacent to H,thenclearlywe canfndan independentsetinGincluding vwithorder r+1,again acontradiction. . 

	Lemma 2. Let Gbe a graph such that = r. 1. Then for each vertex vsuch that v2V(G)−V(H), vis adjacent to at least two vertices in H. 
	Proof. If vis not adjacent to at least two vertices in H, then clearly we can fnd an independentsetinGincluding vwithorder r+1, acontradiction. . 
	Lemma 3. Let Gbe a graph with r . 5 such that = r.If H = C(2r), then for each vertex vsuch that v2 V(G)−V(H), vis adjacent to exactly two or exactly three consecutive vertices in H. 
	Proof. Let aand bbe two neighbors of vin Hsuch that .(v)= .(a,b). Put .= .(v). Clearly ..r. First,suppose ..2. Then visadjacent toa subsetof threeconsecutive verticesinH.If.=1,thenvisadjacenttotwoconsecutivevertices. Butif.=2,andv isnotadjacenttothreeconsecutiveverticesinH,thenclearlywecanfndanindependent setin Gincludingvwithorder r+1, acontradiction. 
	Next,bywayofcontradiction,suppose..3. Nowv,a,barecontainedinC(.+2)and C(2r−.+2)subgraphs,whichshareonlythesethreevertices. LetCdenotetheC(.+2) subgraph and let Cdenote the C(2r−.+2) subgraph. Note that V(C)[V(C)= V(H)[{v}. We considerthreecases. 
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	2 
	1
	2

	Case 1: Suppose .= r. Then C= C(r+2) and C= C(r+2). Since each vertex w2V(G)−V(H)isadjacenttoatleasttwoverticesinH,thentheeccentricityofvisat .r+2. 
	1 
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	most +1. Because r.5,theeccentricityof visatmost r−1,acontradiction. 
	2 
	Case 2: Suppose 4...r−1. Now .+2.r+1 and2r−.+2.2r−2. Thenthe eccentricityof vwith relation to His at most r−1, which only occurs when .= 4. If 4 <..r−1,sinceeach vertex notin Hisadjacent toatleasttwo verticesin H,then theeccentricityof visatmost r−1,acontradiction. Hence.=4,whichinturnimplies there exists a unique vertex cin Hat distance r−1 from v. Since each vertex not in Hisadjacent toatleasttwo verticesin H,thentheeccentricityof visatmost r−1,a contradiction. 
	Case 3: Suppose.=3. Letc,dbethetwoverticesseparatingafrombinH.NowC= C(5)and C=C(2r−1). EnumeratetheverticesofCasx=v,x=a,x,...,xr−2 = b. Foreachvertexx,x,x,...,xr−2 andxr+1,xr+2,...,xr−2,thereexistuniquevertices yj ,zj in Hsuch thatthedistancefrom xj toboth yj and zj withrelationto Cis r−1. Note that yj and zj are adjacent. But the distance from vto both cand dis at most 2, and thedistance from vto the remainingvertices in His at most r−1. Thus there exists a non-empty collection of vertices Znot in H adjace
	Case 3: Suppose.=3. Letc,dbethetwoverticesseparatingafrombinH.NowC= C(5)and C=C(2r−1). EnumeratetheverticesofCasx=v,x=a,x,...,xr−2 = b. Foreachvertexx,x,x,...,xr−2 andxr+1,xr+2,...,xr−2,thereexistuniquevertices yj ,zj in Hsuch thatthedistancefrom xj toboth yj and zj withrelationto Cis r−1. Note that yj and zj are adjacent. But the distance from vto both cand dis at most 2, and thedistance from vto the remainingvertices in His at most r−1. Thus there exists a non-empty collection of vertices Znot in H adjace
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	adjacent only to both x
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	adjacentonlytoboth xr−2 and xr−3 inH. Butthisimplies .r+1, unlesseachvertex of Zisadjacent toeach vertexof Zr−3. However,thentheeccentricityof xisatmost r−1,again acontradiction. . 
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	Lemma 4. Let Gbe a graph with 3.r.4 such that =r. Then either: 
	1) Gcontains H = C(2r) as an induced subgraph, and for each vertex vsuch that v2V(G)−V(H), vis adjacent to exactly two or exactly three consecutive vertices in H, or 
	2) Gcontains P(2r) as an induced subgraph. 
	Proof. Let us suppose H = C(2r). We shall show that if vis not adjacent to exactly two orexactlythreeconsecutiveverticesin H,then Galsocontains P(2r)asaninduced subgraph. LetaandbbetwoneighborsofvonHsuchthat.(v)=.(a,b). Put.=.(v). Clearly..r. 
	First, suppose .. 2. Then vis adjacent to a subset of three consecutive vertices in H.If .=1,then visadjacent totwo consecutivevertices,acontradiction. Butif .=2, and vis not adjacent to three consecutive vertices in H, then clearly we can fnd an independentsetinGincluding vwithorder r+1, acontradiction. 
	Therefore,wecanassume..3. Ifr=3,then.=3,since..r.Ifr=4,then..4. Nowv,a,barecontainedinC(.+2)andC(2r−.+2)subgraphs, whichshareonlythese threevertices. Let Cdenotethe C(.+2)subgraph andletCdenotethe C(2r−.+2) subgraph. Notethat V(C)[V(C)=V(H)[{v}. We considertwo cases. 
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	Case 1: First suppose r= 4. If .= 4, then C= C(6) and C= C(6). Thus the eccentricityof vwith relation to His at most 3. Let cand dbe the unique vertices at distance3from vwithrelationto Cand C,respectively. Sinceeach vertexnotinHis adjacent to atleasttwo vertices in H,theremust existavertex wnot in Hadjacent to onlycanddinH,otherwisetheeccentricityofvwouldbe3,acontradiction. However,in thiscase,wecanchooseanindependentsetofsize5containingw,anothercontradiction. Hence, we can assume .=3, C= C(5), and C= C(7)
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	Case 2: Nextsuppose r=3. Then .=3asnotedearlier,C=C(5),and C=C(5). We canassume a=hand b=h. 
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	Claim: visadjacent toeitherboth hand h,or hand h. Byway ofcontradiction, suppose visadjacenttoneitherhnor h. Then{v,h,h}isanindependentsetinGof size3. Notethattheeccentricityofa=hwithrespecttoHisatmost2. Moreover,each vertexw6=vnotinHmust beadjacenttosomevertexin{v,h,h};otherwise =4,a contradiction. This impliestheeccentricityof ais2 withrespect to G, a contradiction. Hence, vis adjacent to either hor h. Next,by a symmetricalargument, we have vis or h. 
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	Ifvisadjacenttoeitherbothhandh,orbothhandh,thentheclaimisestablished. Thus we can assume vis adjacent to only both hand hamong {h,h,h,h}. Since the eccentricityof vwith respect to His 2, and each vertex not in His adjacent to at leasttwoverticesinH,theremustexistavertexwnotinHadjacenttoonlybothhand 
	Ifvisadjacenttoeitherbothhandh,orbothhandh,thentheclaimisestablished. Thus we can assume vis adjacent to only both hand hamong {h,h,h,h}. Since the eccentricityof vwith respect to His 2, and each vertex not in His adjacent to at leasttwoverticesinH,theremustexistavertexwnotinHadjacenttoonlybothhand 
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	hinH. Otherwise,theeccentricityof vwithrespectto Gisatmost2,acontradiction. Now,by lettingwplay theroleof vintheprecedingparagraph, we canshow wmust be or h,acontradiction. Thiscompletestheclaim. 
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	adjacent toeitherh
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	Inlightoftheclaim,wecanassume visadjacenttoboth hand h. Onceagain,since theeccentricityof vwithrespectto Hisatmost2,andeachvertexnotinHisadjacent to at least two vertices in H, there must exist a vertex wnot in H adjacent to only both hand hin H. Otherwise,the eccentricityof vwith respect to Gisat most 2, a contradiction. Butnow wecanfndaninducedP(6)inG,startingwith wandincluding alltheverticesof Hexcepth. . 
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	Lemma 5. Let Gbe a graph with r. 3 such that =r.If H=P(2r) and vis a vertex such that v2 V(G)− V(H), then 1. .(v). 3. 
	Proof. Since vmust be adjacent to at least two vertices in Hfrom Lemma 2, the lower bound is obvious. Proceeding by contradiction, suppose .(v) . 4 (noting that this a and hb be the two center vertices on the even path H, where a<b. Let hm and hn be two verticesin Hsuch that .(v)= .(hm,hn),where we assume n>m. We consider two main cases: 1) m<aand n>b(the centers are betweentheverticeshm and hn in H);and2) m. aor n. b. 
	assumption implies r>3). Let h

	Case 1a: Supposethata−m=n−b. Weshowthattheeccentricityofvisatmostr−1, acontradiction. First,let dF (x,y)be theshortest pathdistancefromvertex xtovertex ycontained inagraph F. Withoutlossofgenerality,we canassume dG(v,b). dG(v,a), aswellas dG(v,hr). dG(v,h).NotethatthereareatleasttwoverticesinHtotheleft of hm andatleasttwo verticesin Htotheright of hn,because .(v). 4andtheremust be thesamenumberoneithersideduetooursupposition. Consequently, 
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	dG(v,hb). dG (v,ha) 
	. dG(hm,ha)+1 
	. dH (h,ha)− dH (h,hm)+1 
	1
	1

	. dH (h,ha)− 1 
	1

	=r− 2 
	Now, since .(v) . 4 and a− m = n− b, we can be assured that dH (hm,ha)= dH (hn,hb). 2. So, 
	dG(v,hr). dG(v,h) 
	2
	1

	. dG(h,hm)+1 
	1

	. dH (h,ha)− dH (hm,ha)+1 
	1

	. dH (h,ha)− 1 
	1

	=r− 2 
	By the same token, vcan reach the other vertices of Hin at most r− 2 steps. This impliesitseccentricityisatmostr− 1,sinceeveryvertexinV(G)− V(H)isadjacentto avertexin HbyLemma1. 
	Case 1b: Suppose that,withoutlossofgenerality, a− m<n− b. Weagainshowthat theeccentricityof visatmost r− 1,acontradiction. First,observe thatsince .(v). 4, thereareatmost2r−3verticesontheinducedsubpathofHstartingwithhm andending with hn. Thisimpliesthedistancebetween vand every vertex of this induced subpath is at most r− 1. Furthermore, since 0 <a− m<n− b, there is at least one vertex strictly between hb and hn in H. Hence, dG(v,hr) . dH (hb,hr)− 1= r− 2. Finally, 
	Case 1b: Suppose that,withoutlossofgenerality, a− m<n− b. Weagainshowthat theeccentricityof visatmost r− 1,acontradiction. First,observe thatsince .(v). 4, thereareatmost2r−3verticesontheinducedsubpathofHstartingwithhm andending with hn. Thisimpliesthedistancebetween vand every vertex of this induced subpath is at most r− 1. Furthermore, since 0 <a− m<n− b, there is at least one vertex strictly between hb and hn in H. Hence, dG(v,hr) . dH (hb,hr)− 1= r− 2. Finally, 
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	2

	dG(v,h). dH (h,ha)=r− 1,because dH (hm,ha) . 1. Puttingallthistogether, vcan reach every vertex in H, except possibly h, in at most r− 2 steps. Together with the factsthat vcanreach hinatmost r− 1 steps,and everyvertexin Hisadjacent toat leastonevertexinHotherthan h(fromLemma2),itfollows thattheeccentricityof v isatmost r− 1. 
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	Case 2a: Suppose that, without loss of generality, n. band m>1. We show that theeccentricityof hb isatmostr− 1,acontradiction. Since.(v). 4, dG(hb,h). r− 2. Furthermore, since dG(hb,hi) . r− 2 for 3 . i. b− 1= a,and dG(hb,h) . r− 3, we concludethat hb isatmostr− 2stepsfromanyvertexinHwithindexlessthan b. This isalsoobviouslytrueforallverticesinHwithindicesatleastb,exceptingonlyhr,since dH (hb,hr)=r− 1. Asinthepriorcase,itfollows that theeccentricityof hb isat most r− 1. 
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	Case 2b: Supposethat,withoutlossofgenerality, n. bandm=1. Weshowthatthe eccentricityof hb isatmost r− 1,or . r+1, acontradictioneitherway. Assumethat theeccentricityof hb isatleastr. First,observethat dG(hb,h). r− 2(since.(v). 4), and that dG(hb,hi) . r− 2 for 3 . i. b− 1= a. Hence,the only vertices in Hwhich couldbeatdistancer− 1fromhb arehandhr. Sincetheeccentricityofhb isatleastr, theremust existavertex z2 V(G)− V(H)which isadjacent toonlythesetwo vertices in H. Butthentheverticesin Hwithodd indicestoget
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	Lemma 6. Let Gbe a graph with r. 3 such that = r. Suppose H= P(2r).Let v be a vertex such that v2 V(G)− V(H). Then the neighbors of vin Hmust be a subset of four consecutive vertices. Moreover, if r. 4 and .(v)=3, the neighbors of vin H cannot be a subset of {h,hr−2,hr−1,hr}, {h,h,hr−1,hr},or {h,h,h,hr}. 
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	Proof. By Lemma 2, we know that each v2 V(G)− V(H) is adjacent to at least two verticesinH.IfvhasexactlytwoneighborsinH,thenitsneighborhood restrictedto H isclearlya subset offour consecutive vertices,since .(v) . 3. So we assumethat vhas atleastthreeneighbors in Handconsidertwo casesfor r. 
	Case 1: Suppose that r = 3. If v is not adjacent to either of hor h, then its neighborhood restrictedto Hisclearlya subsetoffourconsecutivevertices. Sowithout lossofgeneralitysuppose that visadjacent to h. We now considertwo subcases. 
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	Case 1a: Assumethat visalsoadjacent vhasexactlythreeneighbors in H, then it is easily verifed that its neighborhood restricted to His a subset of four consecutive vertices. So we assume that vhas four neighbors in H. In this case, there are six possibilities for the adjacencies of the other two neighbors of v in H. If the additionaltwoneighborsareexactly{h,h},{h,h} or{h,h},thentheneighborhood of vrestrictedto Hisclearlyasubsetoffourconsecutive vertices. Sotocompletethe proof ofthissubcase, weproceed byway o
	tovertexh.If 
	2

	3
	4
	3
	6
	5
	6
	{
	3
	5
	4
	5
	4
	6
	3 
	5
	4 
	6 

	v. Thus theremust exista vertex zv not in Hat distance threefrom vthat is adjacent to both hand h, and no other vertices of H. But now {zv,h,h,h} determines an independent set of order four, a contradiction to = r= 3. Assume that vis instead 
	v. Thus theremust exista vertex zv not in Hat distance threefrom vthat is adjacent to both hand h, and no other vertices of H. But now {zv,h,h,h} determines an independent set of order four, a contradiction to = r= 3. Assume that vis instead 
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	and h. Itisstraightforward toverifythat eachvertexin Hisatdistance at most two from v, and that vertices hand hare the only vertices in Hat distance two from v. Thus theremust exista vertexzv not in Hatdistancethreefrom vthatis and h, and no other vertices of H. It is straightforward to verify that each vertex in His at distanceat most two from h, and that vertices h, h, and hare the only vertices in Hat distance two from h. Thus there must exist a vertex znotin Hatdistancethreefrom hthatisadjacent toasubse
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	Case 1b: Assume that vis not adjacent to h.If vhas exactly three neighbors in H, then it is easily verifed that its neighborhood restricted to H is a subset of four consecutivevertices,unlessaneighborofvish. Ifthethirdneighboristheneitherhor h,theneighborhood of vrestrictedto Hisasubsetof fourconsecutivevertices. Butif theneighborsofvrestrictedtoHarepreciselyh,h,h},then{v,h,h,h} determines an independent setof orderfour,a contradiction. Now letusassume that vhas exactly fourneighbors in H. Inthiscasetherear
	2
	5
	4 
	6
	{
	1
	3
	5
	2
	4
	6
	1
	3
	4
	5
	1
	3
	4
	6
	1
	3
	5
	6
	1
	4
	5
	6
	2 
	6
	2 
	5
	2 
	4
	1
	3
	5
	{
	1
	4
	6
	1
	3
	6

	Case 2: Suppose that r. 4. Let kbe thesmallestinteger such that vis adjacent to hk.Ifk. 4,thensince.(v). 3,theneighborhood ofvrestrictedtoHisclearlyasubset offourconsecutivevertices. We now considerthethreeremainingsubcases separately. 
	Case 2a: Assume that k= 3. If vis not adjacent to hr, then since .(v) . 3, the neighborhood of vrestrictedto Hisclearlya subset of fourconsecutive vertices. So we willassume that vis adjacent to hr. We willshow that vmust have at leastone other neighbor in H, otherwise our assumption = rwillbe violated. Suppose vis adjacent to preciselyhand hr of H. Each vertexin Hisatdistanceat most r− 1fromvertex h,and hr+2 and hr+3 aretheonlyverticesinHatdistancer− 1fromvertexh. Thus, theremust existavertex znotin Hatdis
	Case 2a: Assume that k= 3. If vis not adjacent to hr, then since .(v) . 3, the neighborhood of vrestrictedto Hisclearlya subset of fourconsecutive vertices. So we willassume that vis adjacent to hr. We willshow that vmust have at leastone other neighbor in H, otherwise our assumption = rwillbe violated. Suppose vis adjacent to preciselyhand hr of H. Each vertexin Hisatdistanceat most r− 1fromvertex h,and hr+2 and hr+3 aretheonlyverticesinHatdistancer− 1fromvertexh. Thus, theremust existavertex znotin Hatdis
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	v notin H atdistance r from v thatisadjacent to hr+1 and hr+2,andnootherverticesof H. Then h,h,...,hr,hr+3,hr+5,...,hr,zv} determinesan independent setof order r+1. Thus, if k = 3, then v must have another neighbor in H in addition to hand hr, otherwise 
	onlyverticesin H atdistance r
	− 
	1from v. Thus, theremust existavertexz
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	6 r.
	= 
	Since k =3, v isadjacent to hand hr,and .(v) . 3, any otherneighbor of v in H, say hj , must satisfy both j− 3 . 3 and 2r− j . 3, which implythat 2r− 3 . j . 6. So if r . 5, then v could only be adjacent to hand hr of H, which we have shown is impossible when =r. Thus, we canassumethat r=4,and notethatany neighbor of v in H otherthan hand hr hasindexeither5or6. Butv cannotbe adjacent toeither hor h,otherwisetheeccentricityof v would be lessthanfour. Thus, when k =3,the neighborhood of v restrictedto H iscle
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	Case 2b: Assume that k = 2. If v is not adjacent to hr nor to hr−1, then since .(v) . 3, the neighborhood of v restricted to H is clearly a subset of four consecutive vertices. Sowe willassumethat v isadjacent toatleastoneof hr−1 and hr. Moreover, we observe that if v is onlyadjacent to h, hr−1, and hr in H, then the neighborhood of v restrictedto H isclearlyasubsetoffourconsecutivevertices. Thus, we canassume that v hasatleastoneadditionalneighbor in H. 
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	Suppose that v isadjacent to hr. Nowsince .(v). 3and v isadjacent to hand hr, it follows that v can only be adjacent to hor hr−1 when r . 5; or h, h,or hwhen r=4. If v isadjacent toonly h, hr, h,oronlyto h, hr, hr−1 in H,thenitfollows that the neighborhood of v restrictedto H is a subset of four consecutive vertices. If v is adjacent to h, hr and to both hand hr−1, then each vertex in H is at distanceat most r− 1from v,and hr+1 istheonlyvertexthat ispossibly atdistanceexactly r− 1 fromv. Butthisimpliesthatt
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	Next, suppose that v is not adjacent to hr. We previously noted that in this case v mustbeadjacenttohr−1. Nowsince.(v). 3andvisadjacenttohandhr−1,ifr. 5, then v canhave nootherneighbors in H,inwhich casetheneighborhood of v restricted to H is clearlya subset of fourconsecutive vertices. If r =4, thensince .(v). 3and v isadjacent to hand hr−1, v canalsobe adjacent toeitherhor h. Butif r=4and v is adjacent to either hor h, then each vertex in H is at distance at most two from v, which impliesthat theeccentric
	2
	2
	2 
	2
	2 
	2
	4 
	5
	4 
	5

	Case 2c: Assumethat k =1. If v is not adjacent to any of hr−2, hr−1,or hr, then since.(v) . 3,theneighborhoodofvrestrictedtoHisclearlyasubsetoffourconsecutive vertices. So we willassumethat v isadjacent toat leastone of hr−2, hr−1,or hr. Let kbe thesmallestintegeramong 2r− 2,2r− 1,and2r such that v isadjacent to hk . 
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	Suppose that k=2r− 2. Inthiscase,since.(v). 3and v isadjacenttoboth hand hr−2,ifr. 5,thenv canhavenootherneighbors inH,inwhichcasetheneighborhood of v restrictedto H is clearlya subset of four consecutive vertices. If r = 4, then since .(v). 3 and v is adjacent to hand hr−2, v can be adjacent to either hor h. Butif r=4and v isadjacenttoeitherofhor h,theneachvertexinH isatdistanceatmost 
	Suppose that k=2r− 2. Inthiscase,since.(v). 3and v isadjacenttoboth hand hr−2,ifr. 5,thenv canhavenootherneighbors inH,inwhichcasetheneighborhood of v restrictedto H is clearlya subset of four consecutive vertices. If r = 4, then since .(v). 3 and v is adjacent to hand hr−2, v can be adjacent to either hor h. Butif r=4and v isadjacenttoeitherofhor h,theneachvertexinH isatdistanceatmost 
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	threefrom v,and histheonlyvertexthatispossibly atdistanceexactlythreefrom v. Butthisimpliesthattheeccentricityof vislessthanfour. 
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	Supposethatk=2r−1. Inthiscase,since.(v). 3andvisadjacenttohandhr−1, if r. 5,then vcanhaveatmostoneotherneighbor in H,namely h,inwhich casethe neighborhood ofvrestrictedtoHisclearlyasubsetoffourconsecutivevertices. Ifr=4, then since .(v) . 3 and visadjacent to hand hr−2, vcan be adjacent to hor h.If r=4and visnotadjacent to h,thentheneighborhood of vrestrictedto Hisclearlya subset offour consecutive vertices. If r=4 and visadjacent to h,theneach vertex in Hisatdistanceatmosttwo from v,whichimpliesthattheecce
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	Finally,suppose that k=2r. Inthiscase,since .(v). 3 and visadjacent to hand hr (butnottohr−1 andhr−2),vcanhaveatmosttwootherneighborsinH,namelyhandh. Inthiscase(whichalso completesthefrstclaiminthestatementofthelemma), theneighborhood of vrestrictedto Hisasubsetoffourconsecutivevertices. 
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	Beforeproving thatif r. 4,theneighbors of vin Hcannotbe asubsetof {h,hr−2, hr−1,hr}, let us note that once this is proven, the fact that the neighbors of vin H cannot be a subset of {h,h,h,hr} will follow by a symmetric argument. To prove that the neighbors of vin Hcannot be subset of {h,hr−2,hr−1,hr}, let us suppose otherwise. Since .(v)=3, and we have assumed that theset of neighbors of vin His asubsetof {h,hr−2,hr−1,hr},itfollows thatvertexvmustbe adjacenttoverticeshand hr−2. Since r. 4, it is easily ver
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	Next we show that if r . 4, then the neighbors of vin H cannot be a subset of h,h,hr−1,hr}. Letussuppose otherwise. Since.(v)=3,andwe have assumedthat thesetofneighbors of vin Hisasubsetof {h,h,hr−1,hr},itfollows that vmust be adjacent to hand hr−1. Since r. 4, itiseasilyverifed that hr and hr+1 are theonly verticesin Hpossibly atdistance r− 1from v. Thus, theremust existavertexznotin Hatdistance rfrom vthatisadjacent toboth hr and hr+1,andnootherverticesin H. Ifriseven,theset{h,h,...,hr−1,hr+2,hr+4,...,hr,
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	Lemma 7. Let Gbe a graph with =r=3. Suppose H=P(6).Let Uˆ V(G)− V(H) be a collection of vertices such that for every u2 U, .(u)=3 and the neighbors of uin H are a subset of {h,h,h,h}. Then U must induce a clique in G, and each vertex u2 Umust be adjacent to each of the vertices {h,h,h,h}. Moreover, if there exists a vertex v2 V(G)− V(H) adjacent to hsuch that the neighbors of vin Hare a subset of h,h,h}, then vis adjacent to each vertex of U. 
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	Proof. First,we prove that every vertex u2 Umust be adjacent to each of the vertices h,h,h,h}. For any u 2 U, since .(u) = 3 and the neighbors of uthat are in H determine a subset of {h,h,h,h}, umust be adjacent to hand h. Further, u mustbe adjacenttoatleastoneof hor h,otherwisetheindependentset{h,h,h,u}contradicts =r=3. Now we proceed by contradiction, andwithoutloss ofgenerality, suppose that uis not adjacent to h. Then let us consider the eccentricity of h.It is easily verifed that there must be a vertex
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	Next,toprovethat UmustinduceacliqueinG,letussuppose otherwise. Let uand ube nonadjacent vertices in U. It is easilyverifed that theremust exista vertex zat distancethreefromhthatisadjacenttoonlyasubsetofh,h,and hinH. Notethat zcannot be adjacent to any of u, u,or h, otherwise it is not at distance three from h. In this case, {u,u,h,z} will determine an independent set of order four, which contradicts =r=3. Thus theverticesof Umustinduceacliquein G. 
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	To prove ourlastclaim,suppose thatthereexistsavertexv2 V(G)− V(H)adjacent to hsuch that the neighbors of vin Hare a subset of {h,h,h}, but that vis not adjacent to somevertex u2 U. We have proven that umust be adjacent to each of the vertices{h,h,h,h}. Byassumption,visadjacentto handifitsonlyotherneighbor in H is h, then the set {h,h,h,v} would contradict = r= 3. Thus, vmust be . ItisstraightforwardtoverifythateachvertexinHisatdistanceatmost two from vertex u, and that vertices hand hare the only vertices i
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	Similarly,inorderthat u,v,h,z}notdetermineanindependentsetoforderfour,the must be adjacent. 
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	onlypossibilityisthat vand z
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	Byassumption, theneighbors of vin Hareasubsetof h,h,h},butsincewe have shownthatvmustbeadjacenttoz,itfollowsthatvcannotbeadjacenttoh,otherwise zwould notbe atdistancethreefrom h. Inorderthat {h,h,v,zu}notdeterminean u are adjacent. In this case,letusconsidertheeccentricityofv. Itisatdistanceatmosttwofromeachvertexof H[{u,zu,z,z},anddistancetwo fromallverticesin Hexcepthand h. Thus,there existsavertexzv adjacent toasubsetofverticesof Hthatdoes notincludethevertices hand h. Inthiscase,inorderthat{h,h,zv,zu}no
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	independent set of order four, theonly possibility isthat vand z
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	Lemma 8. Let Gbe a graph with =r=3. Suppose H=P(6).Let UˆV(G)−V(H) be a collection of vertices such that for every u2U, .(u)=3 and the neighbors of uin H are a subset of {h,h,h,h}. Then U must induce a clique in G, and each vertex u2 U must be adjacent to exactly the set {h,h,h} in H. Moreover, there exists a vertex v2 V(G) −V(H) adjacent to exactly the set {h,h,h} in H, and each such vertex vis adjacent to each vertex of U. 
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	Proof. For any u2 U, since .(u) = 3 and the neighbors of uthat are in Hdetermine a subset of {h,h,h,h}, umust be adjacent to hand h. First, let us prove that u cannot be adjacent to h. Suppose otherwise. Inthiscase, uis at distanceat most two fromeach vertexin H,and theonlyvertices in Hatdistancetwo fromvertexuare h, h, and possibly h. Thus there exists a vertex zat distance three from vertex uthat is adjacent to somesubset of thevertices h, h,and h, and to no other vertices in H. But now {h,h,h,z} determin
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	= r= 3. Thus the neighbors of uthat are in Hdetermine a subset of {h,h,h}. . Thenweconsidertheeccentricityofh. Since it is at distance at most two from each vertex in H, and at distance exactly two from verticesh,h,andh,thereexistsavertexzatdistancethreefromhthatisadjacentto somesubsetof{h,h,h},andtonootherverticesin H. Moreover,zisnotadjacentto u,otherwise zisnot atdistancethreefrom h. Butnow {h,h,u,z} isan independent setthatcontradicts =r=3. Thus, umust be adjacent to exactlytheset {h,h,h}in H. 
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	Next,toprovethat UmustinduceacliqueinG,letussuppose otherwise. Let uand ube nonadjacent vertices in U. It is easilyverifed that theremust exista vertex zat distance threefrom hthat is adjacent to only a subset of {h,h,h} in H. Moreover, zcannot be adjacent to either uor u,otherwise zisnot atdistancethreefrom h.In thiscase,{u,u,h,z}willdetermineanindependentsetoforderfour,whichcontradicts 
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	=r=3. Thus theverticesof Umustinduceacliquein G. 
	Toproveourlastclaim,notethatwehaveproventhatavertexu2Umustbeadjacent toexactlytheset {h,h,h}in H. Itisstraightforward toverifythateach vertexin H isatdistanceatmosttwo from h,andthatvertices{h,h,h}aretheonlyverticesin Hatdistancetwofromvertexh. ThustheremustexistavertexznotinHatdistance threefrom hthatisadjacent tosomesubsetof {h,h,h},andnootherverticesof H. 
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	Moreover,sinceuisadjacent toh,zisnotadjacenttovertexu,otherwisethedistance from hto zisnotthreeas assumed. Vertexzmust be adjacent toboth of hand h, otherwise one of {u,z,h,h} or {h,h,h,z} contradicts = r=3. Similarly, itis easy to verify that each vertex in His at distance at most two from vertex u, and that vertices{h,h,h}aretheonlyverticesinHatdistancetwofromvertexu. Thus,there must existavertexzu notin Hatdistancethreefrom uthatisadjacent tosomesubset of {h,h,h},andnootherverticesof H. Vertexzu must be 
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	Claim: zu isadjacent to h. Byway of contradiction, suppose that zu isnot adjacent toh. OnecancheckthateachvertexinHisatdistanceatmosttwofromvertexh,and thevertices{h,h,h}aretheonlyverticesin Hatdistancetwo fromvertexh. Thus, theremust exista vertexznotin Hat distancethreefrom hthat isadjacent tosome subsetof{h,h,h},andnootherverticesofH. Moreover,sincezu isadjacentto h,zisnotadjacentto zu,otherwisezand harenotatdistancethreeasassumed. Butnow h,h,zu,z}contradicts =r=3. Thus, zu isadjacent to h. 
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	Inthiscase,eachvertexinHisatdistanceatmosttwofromh,andvertices{h,h,h,h}aretheonlyverticesinHatdistancetwofromvertexh. Thus,theremustexistavertex znotin Hat distancethreefrom hthatisadjacent tosomesubset of {h,h,h,h}, andnootherverticesofH. Sincezandzu areadjacenttoh,zisnotadjacenttoeither zor zu, otherwise the distance from hto zis not three as assumed. So we see that zmust be adjacent to zu,otherwise {z,z,zu,h}willdeterminean independent setof orderfour,whichcontradicts =r=3. 
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	Since zmust be adjacent totwo verticesin H, each vertex of H[{u,zu,z,z}isat distanceatmosttwo fromvertex h,and verticesh, h,and haretheonlyverticesin Hatdistancetwofromvertexh. Thus,theremustexistavertexznotinHatdistance threefrom hthatisadjacent tosomesubsetof {h,h,h},andnootherverticesof H. Atthispoint,wenotethatthefocusoftheremainderofourproofistodemonstratethat zis thevertex vthat existsas claimedinthe statement of thelemma. Vertex zmust be adjacent to h, otherwise {h,h,h,z}will determine an independent
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	independent setoforderfour,whichcontradicts =r=3. Finally,we seethat z
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	isnotthreeasassumed. Itfollowsthat zmustbe adjacenttou,otherwise{u,z,z,h}willdetermineanindependent setoforderfour,which contradicts =r=3. . 
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	Lemma 9. Let Gbe a graph with =r=3. Suppose H=P(6).Let Uˆ V(G)− V(H) be a collection of vertices such that for every u2 U, .(u)=3 and the neighbors of uin H are a subset of {h,h,h,h}. Then U must induce a clique in G, and each vertex u2 U must be adjacent to exactly the set {h,h,h} in H. Moreover, there exists a vertex v2 V(G) − V(H) adjacent to exactly the set {h,h,h} in H, and each such vertex vis adjacent to each vertex of U. 
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	Proof. Theproof issymmetrictotheproof ofLemma8. . 
	Lemma 10. Let Gbe a graph with r. 3 such that =r. Assume H=P(2r). Suppose Uis a collection of vertices such that Uˆ V(G)− V(H) and k=min{j| u2 Uand uis adjacent to hj }. Moreover, suppose for every u2 Uthat uis adjacent to hk, and .(v)=3 for some v2 U. Then: 
	1) If 2. k. 2r−4, then there exists a vertex z2 V(G)−V(H)such that zis adjacent to both hand hr. Furthermore, zis adjacent to only these two vertices in H, and zis not adjacent to any vertex u2 U. 
	1 
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	2) and the neighbors of uin Hare a subset of {h,h,h,h}, then there exists a vertex z2 V(G)− V(H) such that z is adjacent to hand at least one of hand hr. Furthermore, zis adjacent to only these vertices in H, and zis not adjacent to any vertex u2 U. 
	If k=1 and for every vertex u
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	U, uis adjacent to h
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	3) If k=2r− 3 and for every vertex u2 U, the neighbors of uin H are a subset of {hr−3,hr−2,hr−1,hr}, then there exists a vertex z2 V(G)− V(H) such that zis r and at least one of hor hr−1. Furthermore, zis adjacent to only these vertices in H, and zis not adjacent to any vertex u2 U. 
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	Proof. ByLemma2,we know that visadjacent toat leasttwo verticesin H. First,we 
	makethefollowingsimplebutusefulobservations. 
	k+3. 
	*)If k
	. 
	4,thensince.(v)=3, visadjacent to h

	k+3 or hr−(3−k). 
	**)If k
	. 
	3,thensince .(v)=3, visadjacent to h
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	Proof of 1). Recallwe areassuming that2 . k. 2r− 4. First,suppose r=3. Then k= 2, and by **, vis adjacent to hand also h. We begin by showing that vis not , so suppose otherwise. In this case, it is straightforward to verify that each vertex in H is at distance at most two from h, and that h, h, and hare the . Thus, theremust existavertex znot in H at distance three from vthat is adjacent to a subset of h, h, and h, and no other vertices of H. Clearly, zis not adjacent to v, otherwise hand zare not at dista
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	only vertices in Hpossibly at distance two from h
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	verify that each vertex in His at distance at most two from v, and that h
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	H. Clearly,zisnotadjacent to v,otherwisetheyarenotatdistancethree,as assumed. Ifthereissome u2 Uthatisadjacent to z,thenby assumption uisalso adjacent to h
	H. Clearly,zisnotadjacent to v,otherwisetheyarenotatdistancethree,as assumed. Ifthereissome u2 Uthatisadjacent to z,thenby assumption uisalso adjacent to h
	2 

	butnotto v (otherwisez and v arenotatdistancethree). Vertexumust be adjacentto h, otherwise the set {u,v,h,h} contradicts = r =3. Now, itiseasilyverifed that theremust be avertexznotin H atdistancethreefrom h. Sincezisnotadjacentto v,u,and h,theset {u,v,h,z} contradicts =r=3. Thus, 10.1)istruewhen r=3. 
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	Nextsuppose that r. 4,andletusconsiderfvecases. 
	Case1a: Supposethatk=2. Thenby**,vmaybeadjacenttohorhr−1. ByLemma 6,we seethat v cannotbe adjacent toboth hand hr−1,otherwisetheneighborhood of v restrictedto H isanotsubsetoffourconsecutivevertices. 
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	First,we willshow that v cannot be adjacent to hr−1. So suppose otherwise. Inthis case,by Lemma6,we seethattheonlyotherpossible neighbor of v ishr,otherwisethe neighborhood of v in H isnotasubsetoffourconsecutivevertices. Observethat v isat distanceatmostr− 1fromallverticesofH. Moreover,hr andhr+1 aretheonlyvertices v at distance r from v that is adjacent to hr and hr+1, and no other vertices of H. Now, if r iseven, then the set {h,h,...,hr−1,hr+2,hr+4,...,hr,zv} determines an independent set of order r+1, 
	2
	2
	possibly at distance r
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	1 from v in H. Thus, there is a vertex z
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	Next, suppose that v is adjacent to h. By Lemma 6, we see that the only other and h, otherwise the neighborhood of v in H is not a subset of four consecutive vertices. Next, observe that v must be adjacent to both hand h, otherwiseanindependent setoforder r+1 iseasilyfound, namely {h,h,h,...,hr,v}or {h,h,h,...,hr,v}. Now, itis easily verifed that hr+1 is at distance at most r− 1 fromallverticesofH. Moreover,handhr aretheonlyverticesinH possiblyatdistance r− 1from hr+1. Thus,thereisavertexz=zr+1 atdistancer 
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	Case 1b: Suppose that k=3. Thenby**, v maybe adjacenttohor hr. ByLemma 6,we seethat v cannotbe adjacent toboth hand hr,otherwisetheneighborhood of v restrictedto H isanotsubsetoffourconsecutivevertices. 
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	2

	First,wewillshowthatvisnotadjacenttohr. Sosuppose otherwise. Inthiscase,by Lemma 6 we see that v can have no other neighbors in H, otherwise the neighborhood of v in H is not a subset of four consecutive vertices. Next, it easily verifed that v is at distance at most r− 1 from all vertices of H. Moreover, hr+1 and hr+2 are the only vertices possibly at distance r− 1 from vertex v in H. Thus, there is a vertex zv at distancer− 1fromvertexvthatisadjacenttohr+1 andhr+2,andnootherverticesofH. If r is even, then
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	possibly atdistancethreefromvertexuin H. Thus, thereisavertexz=z
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	Case 1c: Suppose that 4 . k . r− 2. Then r . 6and7 . k+3 . r+1. By*, v is adjacent to hk+3. Now itiseasilyverifedthat hr+1 isatdistanceatmost r− 1fromall verticesof H. Moreover,hand hr aretheonlyverticesin H possibly atdistance r− 1 from hr+1. Thus, there is a vertex z = zr+1 at distance r from hr+1 that is adjacent to hand hr,andnootherverticesof H. Clearly,v isnotadjacent to zr+1,otherwise hr+1 and zr+1 are not at distance r as assumed. Now assume, by way of contradiction, that zr+1 isadjacent tosome u2 U
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	Case 1d: Ifk=r− 1,thenk+3=r+2 andthedistancefromvtoallverticesofH is atmost r− 1. Moreover,hand hr aretheonlyverticespossibly atdistance r− 1from 
	1
	2

	v. Thus, thereisavertexz=zv atdistance r from v thatisadjacent to hand hr,and v. Now assume,by way ofcontradiction, that zv isadjacent to some u 2 U. By defnition of the set U, u is adjacent to hk . But now the distance 
	v. Thus, thereisavertexz=zv atdistance r from v thatisadjacent to hand hr,and v. Now assume,by way ofcontradiction, that zv isadjacent to some u 2 U. By defnition of the set U, u is adjacent to hk . But now the distance 
	1 
	2
	clearlyv isnotadjacent to z

	betweenvand zv isthree,whichcontradictsourassumptionthatthedistancefromzv to vis r. 4. 

	Case 1e: Suppose that r. k. 2r− 4. Then r+3. k+3. 2r− 1. Inthiscase,let usconsidertheeccentricityof hr. Vertexhr isatdistanceatmost r− 1fromallvertices ofH. Moreover,handhr aretheonlyverticespossiblyatdistancer−1fromhr. Thus, thereisavertex z=zr atdistance rfrom hr thatisadjacent to hand hr,andclearly visnotadjacenttozr. Nowassume,bywayof contradiction,that zr isadjacenttosome u2 U. Bydefnitionoftheset U, uisadjacent to hk. Butnow thedistancebetween zr and hr islessthan r,whichcontradictsourassumptionthatth
	1 
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	Proof of 2). Assume that k= 1 and for every vertex u2 U, uis adjacent to hand the neighbors of uin Hare a subset of {h,h,h,h}. Because .(v)=3, vis adjacent to hand h. Letusconsidertheeccentricity of hr+1. Since r. 3, all vertices of H are at distance at most r− 1 from hr+1, and h, h, and hr are the only vertices in H r+1. Thus, theremust exista vertex z= zr+1 adjacent to at least two of h, h, and hr in H.If zr+1 is adjacent to only hand hr, then h,h,h,...,hr−1,zr+1} determinesan independent set of order r+1
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	Proof of 3). Assumethatk=2r− 3 andforeveryvertexu2 U,theneighbors ofuin Harea subsetof {hr−3,hr−2,hr−1,hr}. Because .(v)=3, visadjacent to hr−3 and hr. Letusconsidertheeccentricityofhr. Sincer. 3,allverticesofHareatdistanceat mostr− 1fromhr,and h,hr−1,and hr aretheonlyverticesinHpossibly atdistance r− 1fromhr. Thus,theremustexistavertexz=zr adjacenttoatleasttwoofh,hr−1, and hr in H.If zr is adjacent only to hand hr−1 in H, then {h,h,h,...,hr,zr}determinesanindependentsetoforderr+1,acontradictionto =r. Thus,
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	Lemma 11. Let Gbe agraphwith r. 3suchthat =r. Suppose H=P(2r). Moreover, suppose vis a vertex such that v2 V(G)− V(H) and the neighbors of vinclude neither hnor hr. Then vis adjacent to exactly two, exactly three, or exactly four consecutive vertices in H. 
	1 
	2

	Proof. Let kbe the smallest integer such that vis adjacent to hk. Then clearly k. 2. By Lemma 5, .(v) . 3. If .(v)=3, then by Lemmas 6, 7, and 8, 2 . k. 2r− 4. By Lemma10.1),thereexistsavertexz2 V(G)− V(H)such that zisadjacent toboth handhr. Furthermore,zisadjacenttoonlythesetwoverticesinH,andzisnotadjacent to v. Inthiscase,we frstprove thefollowing claim. 
	1 
	2

	Claim. v is adjacent to four vertices in H. By way of contradiction, assume v is not adjacent to at least one of hk+1 or hk+2. Suppose k is even. Then the set h,h,...,hk−1,hk+1,hk+4,...,hr}[{v} (in case vis not adjacent to hk+1), or the set h,h,...,hk−1,hk+2,hk+4,...,hr}[{v}(in case vis not adjacent to hk+2) is an independent setoforder r+1, acontradiction. Ontheotherhand, if k isodd, thentheset h,h,...,hk−1,hk+1,hk+4,...,hr−1}[{v,z}(in case vis not adjacent to hk+1), or the set {h,h,...,hk−1,hk+2,hk+4,...,
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	Now, if v has four neighbors in H, thensince .(v)=3, thefour neighbors areclearly consecutive. Suppose vhasthreeneighbors inH. Thenbytheclaim,.(v)=2,otherwise v wouldbe forcedtohavefourneighbors inH. Thus,ifv hasthreeneighbors inH,they must be consecutive. Last,suppose thatvertexv hastwo neighbors in H. Bytheclaim, .(v) .2, otherwise v would be forced to have four neighbors in H.If .(v)= 2, then v is adjacent to hk and hk+2. In this case, we have a contradiction, since when k is even h,h,...,hk−1,hk+1,hk+3,
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	Lemma 12. Let Gbe agraphwith r.3suchthat =r. Suppose H =P(2r). Moreover, suppose v is a vertex such that v2V(G)−V(H) and the neighbors of v include h. Then either: 
	1

	1) v is adjacent to exactly two or exactly three consecutive vertices in H;or 
	2) , h, h, and hin H;or 
	v is adjacent to exactly h
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	3) , h, and h;or 
	v is adjacent to h
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	4) , h, h, and hin H;or 
	r=3 and v is adjacent to exactly h
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	5) , h, and hin H. 
	r=3 and v is adjacent to exactly h
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	Proof. First,supposethat.(v)=1. Thenvisclearlyadjacenttoexactlytwoconsecutive verticesin H (namelyhand hr,or hand h). 
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	2

	Next,suppose that .(v)=2 but v is not adjacent to three consecutive vertices in H. Let hm and hn be thetwoverticesinH adjacent to v sothat .(hm,hn)=2,andlet cbe thevertex in H between hm and hn (consecutiveto both ofthem)which isnotadjacent to v. Since r .3, by Lemma 6, v cannot be adjacent to any other vertices of H other thanhm andhn.Wecanformanindependentsetwith +1verticesbyincludingvwith amaximumindependent setin H containing c butnotcontaining either hm or hn. This isacontradiction. Thus, if .(v)=2, v 
	Last,supposethat.(v)=3. Thenvcannotbeadjacenttoexactlytwoorexactlythree consecutive vertices in H. We consider the cases r .4 and r = 3 separately. If r .4, by Lemma6,we know that theneighbors of v in H must be a subsetof h,h,h,h}. Now, v must be adjacent to h(because .(v) = 3), and it must also be adjacent to hby hypothesis. If v is adjacent to each of the vertices {h,h,h,h}, we are done. Therefore, suppose that v is not adjacent to h. Now, by Lemma 10.2), there exists a vertex z 2 V(G)−V(H) such that z is
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	v. Consequently, we canformanindependent setincluding v, z,and h,together with 
	3

	h,h,...,hr−1},whichhas +1 vertices,acontradiction. Thus,vmustbe adjacentto h, h,and h,thedesiredresult. 
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	On the other hand, if r = 3, then the neighbors of v in H must be a subset of h,h,h,h}, {h,h,h,h},or {h,h,h,h}. If these neighbors are a subset of h,h,h,h}, we can argue as in the preceding case to get the desired result. If they are a subset of {h,h,h,h},then by Lemma8, vmust be adjacent to exactly h, h, and hinH. Finally,iftheyareasubsetof{h,h,h,h},thenbyLemma7,vmustbe adjacent toexactlyh,h, h,and hin H. . 
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	Lemma 13. Let Gbe agraphwith r. 3suchthat =r. Suppose H=P(2r). Moreover, suppose vis a vertex such that v2 V(G)−V(H)and the neighbors of vinclude hr. Then either: 
	2

	1) vis adjacent to exactly two or exactly three consecutive vertices in H;or 
	2) r−3, hr−2, hr−1, and hr in H;or 
	vis adjacent to exactly h
	2
	2
	2
	2

	3) r−3, hr−2, and hr in H;or 
	vis adjacent to exactly h
	2
	2
	2

	4) , h, h, and hin H;or 
	r=3 and vis adjacent to exactly h
	1
	2
	5
	6 

	5) , h, and hin H. 
	r=3 and vis adjacent to exactly h
	2
	3
	6 

	Proof. Theproof issymmetrictotheproof ofLemma12. . 
	Lemma 14. Let Gbe a graph with r. 3 such that =r. Then there exists a subgraph Hof Gsuch that either H=P(2r) or H=C(2r), and if u,v2 V(G)− V(H) is a pair of degenerate vertices with respect to H, uis adjacent to v. 
	Proof. Ifr. 5andGcontainsaninducedC(2r)subgraph,letHbethissubgraph. Then Gand HsatisfyLemma3. If r. 5and Gdoes notcontain aninduced C(2r)subgraph, let Hbe theinduced P(2r)subgraph impliedby Lemma1. If3. r. 4and Gcontains aninducedC(2r)subgraph thatsatisfesLemma4,letHbe thissubgraph. If3. r. 4 and Gdoes notcontain aninducedC(2r)subgraph thatsatisfesLemma4,letHbe the induced P(2r)subgraphimpliedbyLemma4. 
	If H= C(2r),then Gand HsatisfyeitherLemma3 orLemma4. Thus, theunionof theneighbors of uand vin Histhreeorlessconsecutivevertices. Let Xbe thisunion. ThenthesubgraphinducedbyV(H)− Xhasanindependentsetofsizer− 1. Thusifu and varenotadjacent, Ghasanindependentsetofsizer+1, acontradiction. 
	Therefore,assumeH=P(2r). Asintheprecedingcase,iftheunionXoftheneighbors of uand vin His three or lessconsecutive vertices and uand vare not adjacent, then Ghas an independent set of size r+1, a contradiction. On the other hand, suppose X isnotthreeorlessconsecutivevertices. We considerfourcases,whichcorrespond tothe fourremainingclausesb)throughe) inthedefnitionofdegeneratevertices. 
	Case 1: Xisfourorlessconsecutiveverticesincludingneitherhnor hr,and k=k. Byoursuppositions andLemma5,we have that1 . .(u),.(v). 3,and either .(u)=3 or .(v) = 3. Otherwise, X is three or less consecutive vertices. Assume .(u)=3. In addition,by thedefnitionof k, wehave k<2r− 3. Thenby Lemma10.1),thereexists a vertex z2 V(G)− V(H) such that zis adjacent to both hand hr. Furthermore, zis adjacent to only these vertices in H, and zis adjacent to neither unor v. Since .(u),.(v) . 3, the neighbors of uand vin H ar
	1 
	2
	0 
	1 
	2

	Thus, if uand varenot adjacent, thenwe can choose and independent setof size r+1 fromtheverticesV(H)− X, u, v,and z,acontradiction. 
	Case 2: Xis a subset of {h,h,h,h}, k= k= 1, and both uand vare adjacent to h. ByLemma10.2), thereexistsa vertex z2 V(G)− V(H) such that zisadjacent to hand at least one of hand hr. Furthermore, zis adjacent to only these vertices in H, and zis adjacent to neither unor v. Thus, if uand vare not adjacent, then we canchoose andindependent setofsize r+1 fromtheverticesV(H)− X, u, v,and z,a contradiction. 
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	4
	0 
	4
	1 
	2 
	2

	Case 3: Xisasubsetof {hr−3,hr−2,hr−1,hr},k=k=2r− 3,andeither.(u)=3 or .(v) = 3. By Lemma 10.3), there exists a vertex z2 V(G)− V(H) such that zis r and atleastoneof hor hr−1. Furthermore, zisadjacent toonlythese vertices in H, and zis adjacent to neither unor v. Thus, if uand vare not adjacent, thenwe canchoose and independent setofsize r+1 fromthevertices V(H)− X, u, v, and z,acontradiction. 
	2
	2
	2
	2
	0 
	adjacent to h
	2
	1 
	2

	Case 4: Theneighborsofuand vonHareidentical. Byoursuppositions andLemma 5, we have that .(u)= .(v)=3. If2 . k. 2r− 4, then by Lemma 10.1), thereexists a vertex z2 V(G)− V(H) such that zis adjacent to both hand hr. Furthermore, zis adjacent to only these two vertices in H, and zis adjacent to neither unor v.If r. 4, thenby Lemma6, Xisfourconsecutive verticescontained in {h,h,...,hr−1}. If r= 3, by Lemmas 6, 7, 8, and 9, Xis four consecutive vertices contained in either h,h,...,h5=2r−1} or {h,h,h,...,h}.IfXis
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	Likewise, if k=1and r. 4, thenby Lemma6, Xiscontained in {course,evenifr=3,itmaystillbethecasethatXiscontainedin{h,h,h,h}. Ifthis istrue,since .(u)=.(v)=3 implieseach of uand visadjacent to h,by Lemma10.2) thereexistsa vertex z2 V(G)− V(H)such that zisadjacent to handat leastoneof hand hr. Furthermore, zis adjacent to onlythese vertices in H, and zis adjacent to neither unor v. Thus if uand vare not adjacent, thenwe canchoose and independent set of size r+1 from the vertices V(H)− X, u, v, and z, a contradi
	h,h,h,h}.Of 
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	If k=2r− 3, Xiscontained in {hr−3,hr−2,hr−1,hr}. Since .(u)=.(v)=3,then r and atleastoneof hor hr−1. Furthermore,zisadjacent toonlytheseverticeson H,and z isadjacent toneither unor v. Thus if uand varenotadjacent, thenwe canchoose an independentsetofsizer+1 fromtheverticesV(H)− X, u,v,and z,acontradiction. Finally,if k>2r− 3, Xisthreeorlessconsecutivevertices,whichwe alreadyshowed impliesuisadjacent to v. . 
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	2
	byLemma10.3),thereexistsavertexz
	2 
	V(G)
	−
	V(H)suchthatzisadjacenttoh
	2
	1 
	2

	Open Problems 
	Analogous to the defnitions of path number and bipartite number, the tree number of a graph G isthemaximum orderofaninducedtreesubgraph. Likewise, the induced circumference ofGisthemaximumorderofaninducedcyclesubgraph. Theseinvariants are denotedby t= t(G) and Cind = Cind(G), respectively. Let . = .(G) be theconnectivityof G. Thefollowingconjecture interestedus because ofitssimilarity tothewell-knownErd¨os-Chv´atalTheorem,whichstatesthatif..− 1foragraph G, thenthegraphhasaHamiltonianpath. 
	-
	ofGraÿti.pc 

	Conjecture 3. (199) Let G be a graph. If . . t− 2, then G contains a Hamiltonian path. 
	Graÿti.pc 

	Letd,d,...,dn bethedegreesequenceofagraphGarrangedinnon-decreasingorder. The annihilation number of G, A= A(G), is thelargest integer k such that thesum of thefrst k termsofthesequence,d+d+...+dk ,isatmosthalfthesumoftheentire sequence(i.e. thesizeofG). Thisinvariantwasintroducedin[13],whereitwasshownto be anupper bound ontheindependencenumber ofthegraph. Thedefnitionpresented here is due to Fajtlowicz, although R. Pepper showed it was equivalent to the original defnitionpresentedin[13]. 
	1
	2
	1 
	2 

	Conjecture 4. (205) Let G be a graph. If Cind . 2(A− 1), then G contains a Hamiltonian path. 
	Graÿti.pc 

	+1, then G contains a Hamiltonian path. 
	Conjecture 5. (201) Let G be a graph. If p=n
	Graÿti.pc 

	− 
	d
	2 

	Foragraph G,letL=L(G)denotethemaximumnumberofleavesofaspanningtree of G. We callthisinvariantthe leaf number of G. Thefollowingconjectureof relatedto L isreminiscentof Dirac’sfamous suÿcient conditionsfor a graph to contain aHamiltoniancycleorpath. Let .=.(G)be theminimumdegreeof G. 
	Graÿti.pc 

	L+1 
	Conjecture 6. (190) Let G be a graph. If . . , then G contains a 
	Graÿti.pc 

	2 
	Hamiltonian path. 
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