A NOTE ON DOMINATING SETS AND AVERAGE DISTANCE

ERMELINDA DELAVIÑA, RYAN PEPPER, AND BILL WALLER
UNIVERSITY OF HOUSTON - DOWNTOWN, HOUSTON, TX, 77002

Abstract

We show that the total domination number of a simple connected graph is greater than the average distance of the graph minus one-half, and that this inequality is best possible. In addition, we show that the domination number of the graph is greater than two-thirds of the average distance minus one-third, and that this inequality is best possible. Although the latter inequality is a corollary to a result of P. Dankelmann, we present a short and direct proof.

1. Introduction and Key Definitions

Let $G=(V, E)$ be a simple connected graph of finite of order $|V|=n$. Although we may identify a graph G with its set of vertices, in cases where we need to be explicit we write $V(G)$ to denote the vertex set of G. A set D of vertices of a graph G is called a dominating set provided each vertex of $V-D$ is adjacent to a member of D. The domination number of G, denoted $=(G)$, is the cardinality of a smallest dominating set in G. Likewise, a set D of vertices is called a total dominating set provided each vertex of V is adjacent to a member of D. The total domination number of G, denoted $t={ }_{t}(G)$, is the cardinality of a smallest total dominating set in G. The distance between two vertices u and v in G is the length of a shortest path in G connecting u and v. The Wiener index or total distance of G, denoted by $W=W(G)$, is the sum of all distances between unordered pairs of distinct vertices of G [5]. The average distance of G, denoted by $\bar{D}=\bar{D}(G)$, is $2 W /[n(n-1)]$. Put another way, this number gives, on average, the distance between a pair of vertices of G. Unless stated otherwise, when we refer to a subgraph of G, we mean an induced subgraph.

The total domination number of a graph was first introduced in [2]. This invariant remains of interest to researchers as evidenced by numerous recent papers. Various upper and lower bounds on t have been discovered. The domination number has, of course, been well studied $[8,9]$.

The average distance of a graph has sometimes been used to provide lower bounds for domination-related invariants, including the domination number itself [4]. One of the first results along these lines is the following theorem due to F. Chung in [1], which originated as a conjecture of the computer program Graffiti [6]. The independence number of G, denoted by $=(G)$, is the cardinality of a largest set of mutually non-adjacent vertices.

[^0]Theorem 1 (Chung). Let G be a graph. Then

$$
\geq \bar{D}
$$

with equality holding if an only if G is complete.
Recently, this theorem has been generalized by Hansen et al. as a result about the forest number $f=f(G)$ of a graph $G[7]$. This is the maximum order of an induced forest of G.

Theorem 2 (Hansen et al.). Let G be a graph. Then

$$
f \geq 2 \bar{D}
$$

This theorem was also motivated by a conjecture of Graffiti [10]. Its proof is based on techniques introduced by Dankelmann in [3]. Dankelmann uses similar techniques in [4] to characterize graphs with fixed order and domination number that have maximum average distance. One can derive the following theorem as a corollary of this characterization (although this is not stated in [4]).
Theorem 3. Let G be a graph. Then

$$
>\frac{2}{3} \bar{D}-\frac{1}{3}
$$

Moreover, this inequality is best possible.
The proof of Danklelmann's characterization result is lengthy and technical. We give a short direct proof of Theorem 3, as well as the following Theorem 4, which is the main result of our paper. We defer the proofs to a later section.

Theorem 4 (Main Theorem). Let G be a graph. Then

$$
t>\bar{D}-\frac{1}{2}
$$

Moreover, this inequality is best possible.

2. Other Definitions

Let $R(k, t, l)$ denote the binary star on $k+t+l$ vertices, where the maximal interior path has order t and there are k leaves on one side of the binary star and l leaves on the other. See Figure 1.

Figure 1. Binary star $R(k, t, l)$.

Now let $R(n, t)$ denote the binary star of order n where the maximal interior path has order t and the leaves are as balanced as possible on each side of the binary star.

A set D of vertices of a graph G is called a connected dominating set provided D is a dominating set that induces a connected subgraph of G. The connected
domination number of G, denoted $c={ }_{c}(G)$, is the cardinality of a smallest connected dominating set in G. A trunk for a graph G is a sub-tree (not necessarily induced) that contains the vertices of a dominating set of G. Hence, every spanning tree of G is a trunk for G, and every connected dominating set is the vertex set of some trunk. Standard graph theoretical terms not defined in this paper can be found in [11], for instance.

3. LEMMAS

The proof of Lemma 5 involves elementary algebra, counting, and limit arguments; we therefore omit it.

Lemma 5. For integers $k \geq 0$ and $t \geq 1$,

$$
\begin{gathered}
W(R(k, t, k))=(t+3) k^{2}+(t+2)(t-1) k+\frac{t(t+1)(t-1)}{6}, \text { and } \\
W(R(k, t, k+1))=(t+3) k^{2}+(t+1)^{2} k+\frac{t(t+1)(t+2)}{6}
\end{gathered}
$$

Moreover,

$$
\begin{gathered}
W(R(k, t, k))<W(R(k, t, k+1))<W(R(k+1, t, k+1)), \text { and } \\
\lim _{k \rightarrow \infty} \bar{D}(R(k, t, k))=\frac{t+3}{2}
\end{gathered}
$$

The following lemma is proven in [6, Theorem 2].
Lemma 6. Let G be a graph with a trunk of order $t \geq 1$. Then

$$
\bar{D}(G) \leq \bar{D}(R(n, t))
$$

with equality holding if and only if $G=R(n, t)$.
The next lemma follows by combining the two previous lemmas.
Lemma 7. Let G be a graph with a trunk of order $t \geq 1$. Then

$$
\bar{D}(G)<\frac{t+3}{2} .
$$

An immediate consequence of Lemmas 5 and 7 is the following corollary, which defines the relationship between the minimum order of a connected dominating set of a graph G, denoted $c_{c}={ }_{c}(G)$, and its average distance.
Corollary 8. Let G be a graph. Then

$$
{ }_{c}>2 \bar{D}-3
$$

Moreover, this inequality is best possible.
Proof. Let D be a minimum connected dominating set. Then any spanning tree of the subgraph induced by D is a trunk for G. Hence, by Lemma 7,

$$
\bar{D}(G)<\frac{c+3}{2}
$$

To show this inequality is best possible, consider $R(j, t, j)$, where $t \geq 1$ and $j \geq 0$. It is easy to see that ${ }_{c}(R(j, t, j))=t$. But by Lemma 5 ,

$$
\lim _{j \rightarrow \infty} \bar{D}(R(j, t, j))=\frac{t+3}{2}=\frac{c+3}{2}
$$

One final lemma is needed. The next simple lemma provides some relations that hold for the number of edges induced by dominating sets and their complements. Given a graph G with dominating set D, a vertex $v \notin D$ is over-dominated by D if it has two or more neighbors in D. The over-domination number of v with respect to D, denoted by $O_{D}(v)$, is one less than the number of neighbors v has in D.

Lemma 9. Let T be a tree with minimum dominating set D such that the number of components of D is k. Denote the number of edges with both endpoints in D by e_{1}, the number of edges with both endpoints in $H=T-D$ by e_{2}, and the number of edges with one endpoint in D and the other endpoint in H by e_{3}. Moreover, let j be the number of non-trivial components of H with at least two neighbors in D and let l_{H} be the number of components of H with exactly one neighbor in D (the leaves of H). Then
a) $e_{1}=|D|-k$
b) $e_{2}=k-1-\sum_{v \in H} O_{D}(v)$
c) $e_{3}=n-|D|+\sum_{v \in H} O_{D}(v)$
d) $2 j+l_{H} \leq e_{3}=k+j+l_{H}-1$
e) $n-l_{H}+2+\sum_{v \in H} O_{D}(v) \leq 2 k+|D|$.

Proof. Part a) holds because D induces a forest with k trees. Part c) is true because every vertex in H has a neighbor in D, giving the $n-|D|$, and because the summation contributes the extra edges that have one endpoint D and one in H. Part b) follows immediately from parts a) and c), since $n-1=e_{1}+e_{2}+e_{3}$ for a tree.

The left hand side of d) comes from the fact that, when counting the edges between D and H, each of the l_{H} leaves in H contributes exactly one edge while each of the j non-trivial components of H contributes at least two edges. The right hand side of d) follows easily by viewing the components of D together with the components of H as the vertices of a new tree with e_{3} edges and $k+j+l_{H}$ vertices.

From d) we deduce that there are at most $k-1$ non-trivial components of H, that is, $j \leq k-1$. Combining this with the right hand side of d) and part c), we arrive at inequality e).

4. Theorem Proofs

Our strategy for proving Theorem 4 is as follows. Given a minimum total dominating set D of a graph G, we form a particular spanning tree T of G so that D is also a minimum total dominating set of T. Then we apply the lemmas from the previous section to obtain the desired result.

Theorem 4 (Main Theorem) Let G be a graph. Then

$$
t>\bar{D}-\frac{1}{2}
$$

Moreover, this inequality is best possible.
Proof. Let D be a minimum total dominating set of G. Suppose that D has k components. We form a spanning tree T of G such that D is also a minimum total dominating set of T. If G is a tree, then put $T=G$ and we are done. Otherwise, let C be a cycle in G. We delete an edge from C as follows.
i) If C has two consecutive vertices x and y such that $x \notin D$ and $y \notin D$, then delete the edge between them. The set D is still total dominating set for the resulting graph.
ii) Suppose the first case does not apply. If C has two consecutive vertices x and y such that $x \in D$ and $y \notin D$, then delete the edge between them. Since the other neighbor of y on C is necessarily in D (or else the first case applies), the set D is still a total dominating set for the resulting graph.
iii) If neither of the first two cases apply, then all of the vertices of C are in D. Delete any edge of C and the set D is still a total dominating set for the resulting graph.
Repeat this process until all cycles are removed. Call the resulting spanning tree T. Since D is a total dominating set of $T, \quad{ }_{t}(T) \leq|D|={ }_{t}(G)$. Since the total domination number of a graph is at most the total domination number of any of its spanning trees, ${ }_{t}(G) \leq{ }_{t}(T)$. Thus, ${ }_{t}(T)=|D|$ and D is a minimum total dominating set of T.

Now, let L_{H}, of cardinality l_{H}, denote the leaves of T that are in $H=T-D$ (the leaves of T that are not in D). Observe that the sub-tree $T-L_{H}$ contains the total dominating set D of G and is thereby a trunk for G. From Lemma 7,

$$
2 \bar{D}-3<\left|T-L_{H}\right|=n-l_{H}
$$

Hence by Lemma 9 part e), and since $2 k \leq t$,

$$
2 \bar{D}-3<2 k+_{t}-2-\sum_{v \in H} O_{D}(v) \leq 2{ }_{t}-2-\sum_{v \in H} O_{D}(v) \leq 2_{t}-2 .
$$

Rearranging yields the desired inequality.
To show the inequality is best possible, consider $R(j, t, j)$, where $t \equiv 2(\bmod 4)$ and $j \geq 0$. It is easy to see that ${ }_{t}(R(j, t, j))=\frac{t}{2}+1$. But by Lemma 5 ,

$$
\lim _{j \rightarrow \infty} \bar{D}(R(j, t, j))=\frac{t}{2}+\frac{3}{2}={ }_{t}+\frac{1}{2}
$$

The proof of the theorem provides a necessary condition for ${ }_{t}=\left\lceil\bar{D}-\frac{1}{2}\right\rceil$. In the proof we found a spanning tree T of a connected graph G such that a minimum total dominating set of G was also a total dominating set for T. We let $H=T-D$ and found that

$$
t>\bar{D}-\frac{1}{2}+\frac{1}{2} \sum_{v \in H} O_{D}(v)
$$

Now if $t=\left\lceil\bar{D}-\frac{1}{2}\right\rceil$, then

$$
\left\lceil\bar{D}-\frac{1}{2}\right\rceil={ }_{t} \geq\left\lceil\bar{D}-\frac{1}{2}+\frac{1}{2} \sum_{v \in H} O_{D}(v)\right\rceil
$$

which immediately suggests that D may over-dominate at most one vertex of H, and if there is an over-dominated vertex of H, its over-domination number is 1 .

To see that there exist graphs in which any spanning tree containing a minimum total dominating set of the graph (as a total dominating set for the spanning tree) over-dominates exacly one vertex (with over-domination number 1) of H and ${ }_{t}=$ $\left\lceil\bar{D}-\frac{1}{2}\right\rceil$, consider $R(j, t, j)$, where $t>1, t \equiv 1(\bmod 4)$ and $j \geq t$. On the other
hand, that this condition is not sufficient for equality is seen in $P_{4 k+3}$ (the path on $4 k+3$ vertices) for $k \geq 1$. Any minimum total dominating set D in $P_{4 k+3}$ over-dominates exactly one vertex v of $V-D$, and v has over-domination number 1 , but t is about one half the number of vertices and \bar{D} is about one third of the number vertices.

Next we present a short and direct proof of Theorem 3. As mentioned previously, this result can be deduced from a result of Dankelmann in [4].

Theorem 3 Let G be a graph. Then

$$
>\frac{2}{3} \bar{D}-\frac{1}{3} .
$$

Moreover, this inequality is best possible.
Proof. Let D be a minimum dominating set of G. Suppose that D has k components. We will form a spanning tree T of G such that D is also a minimum dominating set of T. If G is a tree, then put $T=G$ and we are done. Otherwise, let C be a cycle in G. We delete an edge from C as follows.
i) If C has two consecutive vertices x and y such that $x \notin D$ and $y \notin D$, then delete the edge between them. The set D still dominates the resulting graph.
ii) Suppose the first case does not apply. If C has two consecutive vertices x and y such that $x \in D$ and $y \notin D$, then delete the edge between them. Since the other neighbor of y on C is necessarily in D (or else the first case applies), the set D still dominates the resulting graph.
iii) If neither of the first two cases apply, then all of the vertices of C are in D. Delete any edge of C and the set D still dominates the resulting graph.

Repeat this process until all cycles are removed. Call the resulting spanning tree T. Since D is a dominating set of $T, \quad(T) \leq|D|=(G)$. Since the domination number of a graph is at most the domination number of any of its spanning trees,
$(G) \leq(T)$. Thus, $\quad(T)=|D|$ and D is a minimum dominating set of T.
Now, let L_{H}, of cardinality l_{H}, denote the leaves of T that are in $H=T-D$ (the leaves of T that are not in D). Observe that the sub-tree $T-L_{H}$ contains the dominating set D of G and is thereby a trunk for G. From Lemma 7,

$$
2 \bar{D}-3<\left|T-L_{H}\right|=n-l_{H} .
$$

Hence by Lemma 9 part e), and since $2 k \leq 2$,

$$
2 \bar{D}-3<2 k+-2-\sum_{v \in H} O_{D}(v) \leq 3-2-\sum_{v \in H} O_{D}(v) \leq 3-2
$$

Rearranging yields the desired inequality.
To show the inequality is best possible, consider the family of stars S_{n}. Since the average distance in stars can be made arbitrarily close to 2 , $\frac{2}{3} \bar{D}\left(S_{n}\right)-\frac{1}{3}$ can be made arbitrarily close to $\left(S_{n}\right)=1$.

As was the case for total domination number and average distance, one can deduce from the proof a similar necessary condition for equality in $=\left\lceil\frac{2}{3} \bar{D}-\frac{1}{3}\right\rceil$.

References

[1] F. Chung, The average distance is not more than the independence number, J. Graph Theory, 12 (1988), p. 229-235.
[2] E. Cockayne, R. Dawes and S. Hedetniemi, Total domination in graphs, Networks, 10 (1980), p. 211-219.
[3] P. Dankelmann, Average distance and the independence number, Discrete Applied Mathematics, 51 (1994), p. 73-83.
[4] P. Dankelmann, Average distance and the domination number, Discrete Applied Mathematics, 80 (1997), p. 21-35.
[5] A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: Theory and applications, Acta Applicandae Mathematicae, 66 (2001), p. 211-249.
[6] S. Fajtlowicz and W. Waller, On two conjectures of Graffiti, Congressus Numerantium, 55 (1986), p. 51-56.
[7] P. Hansen, A. Hertz, R. Kilani, O. Marcotte and D. Schindl, Average distance and maximum induced forest, pre-print, 2007.
[8] T. Haynes, S.T. Hedetniemi and P.J. Slater, "Fundamentals of Domination in Graphs," Marcel Decker, Inc., NY, 1998.
[9] T. Haynes, S.T. Hedetniemi and P.J. Slater, "Domination in Graphs: Advanced Topics," Marcel Decker, Inc., NY, 1998.
[10] D.B. West, Open problems column \#23, SIAM Activity Group Newsletter in Discrete Mathematics, 1996.
[11] D.B. West, "Introduction to Graph Theory (2nd ed.)," Prentice-Hall, NJ, 2001.

[^0]: 1991 Mathematics Subject Classification. 05C35.
 Key words and phrases. average distance, domination number, total domination number, Wiener index.

