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Abstract: In this work, we study the problem of maximizing path reliability in mesh networks against 
simultaneous failures of multiple network links. The links belong to shared risk link groups (SRLGs) that have 
arbitrary failure probabilities. This problem is NP-hard and we propose a heuristic algorithm for networks with 
large numbers of SRLGs as well as optimal solutions for networks with smaller numbers of SRLGs. The solutions 
are evaluated through computer simulations. 

Key-Words: path reliability, multiple failures, shared risk link group, routing 

 
1. INTRODUCTION 

Recent advances in networking technology have 
increased the data rate of path connections to 40Gbits/s 
or even 100Gbits/s [1][2]. With such high data rates, a 
failure of a communication path can potentially cause 
significant service disruption to the customers. Therefore 
it is among the top priorities of network operators to 
ensure path reliability. 

A common approach to achieve high reliability is 
through path protection [3]. Such schemes provide 100% 
reliability against single-link failures. However, it is not 
uncommon that when a network failure occurs, multiple 
links that belong to the same shared risk link group 
(SRLG) fail simultaneously [4][5]. In this case, only a 
working and a protection path that are SRLG-disjoint 
can survive the failure [6]. However, the study in [7] 
proved it NP-hard to find SRLG-disjoint working and 
protection paths. Consequently, attempts were made to 
minimize the probability of simultaneous failures of the 
pair. Yuan et al. proved this problem also NP-hard and 
proposed heuristic algorithms for the special cases in 
which all SRLGs have equal failure probabilities [8][9]. 
Various heuristic solutions were also proposed for the 
general case in which the SRLGs have different failure 
probabilities [10][11]. 

In addition to the difficulties in finding the maximum 
reliable working and protection paths, another limitation 
of the protection schemes is that they require the 
reservation of a significant amount of network resources. 
Shared path protection may be used to improve resource 
utilization at the expense of signaling and network 

management [11][12]. Hence, for certain types of traffic 
and customers, it may be more cost-effective to use a 
single-path connection without protection, if the 
reliability of the path can be maximized.  

As later shown in Section 2, for networks with single 
link failures, finding the maximum reliable path can be 
easily solved. However, the problem becomes NP-hard 
with simultaneous multiple link failures [8][9]. In this 
paper, we propose both heuristic and optimal algorithms 
to solve the problem. 

The remainder of the paper is organized as follows. 
In Section 2, we describe the maximum reliable path 
problem. In Section 3, we propose an optimal solution 
for networks with small number of SRLGs. We also 
propose a heuristic solution for networks with large 
number of SRLGs. The algorithms are evaluated through 
computer simulations in Section 4. We conclude the 
paper in Section 5. 

2. PROBLEM DESCRIPTION 
The problem is defined as follows. Given network G 

= (N, L, S, Ps ) where N is the set of nodes, L is the set of 
links (assume they are bidirectional), and S is the set of 
SRLGs in the network, Ps = {p1, p2, p3, …, pi, …} is the 
set of non-failure probabilities of each SRLG si∈S and 0 
< pi < 1, also given Sl  l∈L and Sl⊆ S is the set of 
SRLGs to which link l belongs, find one path P from 
source node s to destination node d such that P has the 
maximum reliability. 

The reliability of a path is defined as follows. Let SP 
be the set of all SRLGs to which the links of a path P 
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belong. Then the reliability of P is 

rP = ∏
∈ PP

i Ss

pi ,  pi ∈  Ps  and pi is the non-failure  

probability of SRLG P
is                               (Eq. 1) 

In this study, we are only considering link failures 
and not node failures because nodal devices in modern 
transport networks often have built-in redundancies and 
are located in well-controlled facilities, which make 
them least likely to fail. 

A single SRLG may contain multiple links while a 
link may belong to multiple SRLGs. However, we can 
transform a link belonging to multiple SRLGs into 
multiple links each belonging to a single SRLG without 
altering the reliabilities of the paths in the network. This 
is explained as follows.  

Let the set of SRLGs to which link l belongs be Sl = {
ls1 , ls2 , … , l

is ,… } and |Sl | > 1. Now replace l with |Sl| 
concatenating links l1, l2, …, li, … , each belongs to a 
unique SRLG ls1 , ls2 , … , l

is ,… from Sl. The reliability 

of li is the non-failure probability of l
is , i.e., pi . Thus the 

reliability of the combined links l1-l2- …-li- … is p1×p2× 
…×pi×…, which is the same as the reliability of l. Also 
because there is no other links branching off from these 
links, a path going through one of the links must also go 
through all of them. Therefore their effects on the path 
reliabilities are the same as that of l. Consequently, 
without the loss of generality, we assume for the 
remainder of the paper, all links each belongs to a single 
SRLG, i.e., | Sl | = 1  l∈L. 

3. ANALYSIS AND SOLUTIONS 
In the special case in which every link belongs to a 

unique SRLG, the maximum reliable path can be readily 
obtained using the following algorithm which is similar 
to Dijkstra’s Algorithm: 

Algorithm OA-1 
Notations 

si-j: 
pi-j: 

the SRLG to which link <i,j> belongs; 
the non-failure probability of si-j; 

Step 1: initialize set ND to contain all nodes except 
s; 

Step 2: initialize array R[] so that R[u] = psu if u is 
adjacent to s; and 0 otherwise; 

Step 3: initialize entries of array PR[] so that PR[u] 
is assigned s if u is adjacent to s; NULL 
otherwise; 

Step 4: initialize array of SRLG sets S[] so that S[u] 

= ∅  u∈N; 
Step 5: while (ND ≠ ∅ ) { 

     choose a node u from ND such that R[u] 
     is maximum; 
     if (R[u] is 0) 
          output “no path exists” and quit; 
     delete u from ND; 
     S[u]=S[PR[u]]U {sPR[u]-u}; 
     if (u is d) { 
          generate the preferred path from 
          PR[] as: 
          s - … - PR[PR[u]] - PR[u] - u; 
          quit; 
     } 
     for (each node v that is adjacent to u) { 
          if (v ∈ND) { 
               if (su-v∈  S[u]) 
                    p = R[u]; 
               else 
                    p = R[u] × pu-v; 
               if (p > R[v]) { 
                    PR[v] = u; 
                    R[v] = p; 
               } 
          } 
     } 
} 

The running time is the same as that of the Dijkstra’s 
Algorithm, i.e., O(|N|log|N|) [13]. 

If each SRLG contains multiple links that may fail 
simultaneously, we propose an optimal solution (OA-2) 
that has running time polynomial to the number of 
network nodes and exponential only to the number of 
SRLGs. 

OA-2 utilizes two subfunctions: GenB() and GenR(). 
GenB(Sx) takes a subset Sx of S as the input. It generates 
an integer number whose binary representation has |S| 
bits. Each of the bits represents a SRLG in S. If SRLG si 
∈  Sx, then bit bi is set to 1; otherwise to 0.  

GenR(B) uses Eq. 1 to compute the reliability of a 
path whose links belong to the SRLGs represented by 
the bits in the binary representation of integer B. The 
details of OA-2 are described as follows: 

Algorithm OA-2 
Notations 

si-j: the SRLG to which link <i,j> belongs; 

Step 1: create a 2-dimensional array T[2|S|][|N|] of 
structure {int p_node;int p_srlg;bool status;}; 
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Step 2: for (every element of T) { 
     p_node = UNKNOWN; 
     p_srlg = 0; 
     status = FALSE; 
} 

Step 3: for (every node, u, that is adjacent to s) { 
     Bs-u = GenB({ss-u}) ; 
     T[Bs-u][u].p_node = s; 
} 

Step 3: continue = TURE; 
while (continue) { 
     continue = FALSE; 
     for (every index i from 1 to 2|S|-1) { 
          for (every index j from 0 to |N|-1) { 

if ( T[i][j].p_node ≠ UNKNOWN and  
T[i][j].status = FALSE) { 
      continue = TRUE; 
      T[i][j].status = TRUE; 
      for (every node u that is adjacent 
      to  node j) { 

Bj-u = GenB({sj-u}); 
k = i OR Bj-u; //Bitwise OR 
T[k][u].p_srlg = i; 
T[k][u].p_node = j; 

      } 
 } 

          } 
     } 
} 

Step 4: 
 
 
 

rm = 0; 
for (every index i from 1 to 2|S|-1) { 
     if ( T[i][d].node ≠ UNKNOWN and  

T[i][d].status = true) { 
if (GenR(i) > rm) { 
     rm = GenR(i); 
     sm = i; 
} 

     } 
} 
if (rm == 0) 
     print “path does not exist” and quit; 

Step 5: print d; 
u = sm; 
v = d; 
while (u ≠ s ){ 
     print T[u][v].p_node; 
     next_u = T[u][v].p_srlg; 
     next_v = T[u][v].p_node; 
     u = next_u; 
     v = next_v; 
} 

The running time of this algorithm is O((N222|S|) 
which is exponential only to |S|, i.e., the number of 
SRLGs. Hence OA-2 is suited for networks that have 
small numbers of SRLGs (e.g., 20 or less). For networks 
with arbitrarily large numbers of SRLGs, we propose a 
heuristic solution. The heuristic algorithm (HA-1) 
executes OA-1 repeatedly while trying to generate more 
reliable paths. The details are as follows: 

Algorithm HA-1 

Step 1: run OA-1 to find a path P between s and d;  
if (failed)  quit; 
compute P’s reliability rP using (Eq. 1); 
r’ = rP; 
P’ = P; 
S’ = S; 

Step 2: s’ = null; 
for (every SRLG si∈S’) { 
     set the non-failure probability of si  to 1; 
     run OA-1 to find a new path Pi ; 
     restore the non-failure probability of si ; 
     if (succeeds in generating Pi) { 
         compute reliability P

ir  using (Eq. 1); 
         if ( P

ir >r’) { 
              r’ = P

ir ; 
              P’ = Pi ; 
              s’ = si ; 
         } 
    } 
} 
set the non-failure probability of s’ to 1; 

Step 3: while (s’ ≠ null) { 
     S’ = S - s’ ; 
     repeat Step 2; 
} 
return P’ ; 

Step 1 repeats OA-1. It generates a path which we 
use as the lower bound to generate more reliable paths in 
the next two steps. In Step 2, we select one SRLG at a 
time from all SRLGs in the network, set its non-failure 
probability to 1, and generate a new path between s and 
d. The intent is to determine whether we can increase the 
path reliability if we make the links belonging to one 
SRLG more attractive than others. After going through 
all the SRLGs, we identify a SRLG which leads to the 
highest reliability of a path. We set its non-failure 
probability to 1 before going to Step 3. The running time 
of this step is O(|S||N|log|N|). Step 3 repeats the previous 
step until no new path can be found with greater 
reliability. The maximum number of iterations in this 
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step is |S|, which results in a total running time of O(|S|2 

|N|log|N|) for the entire algorithm. 
The performances of the algorithms are evaluated by 

computer simulations in the next section. 

4. SIMULATIONS 
We use LEDA programs to randomly generate 

network graphs for the simulations [14]. The network 
size ranges from 10 to 40 nodes. The nodal degree 
ranges from 2.6 to 3.0. The number of SRLGs in each 
network ranges from 2 to 10. The non-failure 
probabilities of the SRLGs are uniformly distributed in 
the range from 0.9000 to 0.9999. Each link is assumed to 
support an unlimited number of paths and is assumed to 
belong to any SRLGs with equal probability.  

The optimal solution OA-2 and the heuristic solution 
HA-1 are evaluated. For all pairs of end nodes, we ran 
the algorithms to obtain the maximum reliable paths. We 
then compared the average reliabilities of the paths. Two 
sets of the results are depicted in Fig. 1 and Fig. 2. 
Results from other network topologies are similar. 

The simulations demonstrate that the performance of 
the heuristic solution is very close to that of the optimal 
solution. In the worst case, the average reliability of the 
path generated by HA-1 is only 1.8% lower than that of 
the optimal paths generated by OA-2. 

We note that the number of SRLGs and their non-
failure probabilities have a significant impact on the 
average reliabilities of the paths. The reliabilities 
improve along with the increase of the non-failure 
probabilities of the SRLGs. In addition, when the 
number of SRLGs is small, a path is more likely to 
consist of links that belong to fewer SRLGs. 
Consequently, from (Eq. 1), the path has higher 
reliability if the non-failure probabilities of the SRLGs 
do not vary significantly. As the number of SRLGs 
increases, the links of a path are more likely to belong to 
a bigger variety of SRLGs, which reduces the 
reliabilities of the paths. 

We also note that, as the nodal degree increases, the 
average reliabilities of the paths increase. The reason for 
this behavior is that an increase in nodal degree results in 
higher average number of links belonging to each SRLG, 
thereby making a path more likely to consist of links that 
belong to fewer SRLGs. 

The network topology and the size of the network 
also affect the reliabilities of the path. Larger networks 
with more nodes result in a higher average hop count for 
paths; hence, for the same nodal degree and the number 
of SRLGs, the links of the paths in a network with more 
nodes will belongs to a greater number of SRLGs than 

paths in a network with fewer nodes, which reduces the 
reliabilities of the paths in a larger network. 

 
 

 

a. Nodal degree = 2.6 

 

 

b. Nodal degree = 3.0 

Fig. 1. Average Path Reliability vs. Number of SRLGs. 
Number of nodes = 20 

 
 

 

a. Nodal degree = 2.6 
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b. Nodal degree = 3.0 

Fig. 2. Average Path Reliability vs. Number of SRLGs. 
Number of nodes = 40. 

 

5. CONCLUSIONS 
In this paper we discussed the problem of finding the 

maximum reliable path between two nodes under 
multiple failures. For arbitrarily large networks that 
contain a small number of SRLGs, we proposed an 
optimal solution with running times that are polynomial 
to the network size and exponential to the number of 
SRLGs. For networks that contain a large number of 
SRLGs, we proposed a heuristic solution with running 
times that are polynomial to both the network size and 
the number of SRLGs. Despite the simplicity of the 
heuristic algorithm, computer simulations demonstrated 
that it yields solutions that are close to optimal. 

 
References: 

[1] T. Wuth, M.W. Chbat and V.F. Kamalov, “Multi-
rate (100G/40G/10G) Transport over Deployed  
Networks,” Proceedings,  Fiber 
communication/National Fiber Optic Engineers 
Conference 2008, February, 2008, pp. 1-9. 

[2] D.C. Lee, “100G and DWDM: Application 
Climate, Network and Service Architecture,” 
Proceedings,  Fiber communication/National 
Fiber Optic Engineers Conference, 2008, 
February, 2008, pp. 1-3. 

[3] T. Wu, Fiber Network Survivability, 1st ed, 
Artech House, 1992. 

[4] S. Ramamurthy and B. Mukherjee, “Survivable 
WDM mesh networks,” Journal of  Lightwave 
Technology, Vol. 21, 2003, pp. 870–883. 

[5] W. D. Grover, Mesh-based Survivable Transport 
Networks: Options and Strategies for , MPLS, 
SONET and ATM Networking, Prentice Hall PTR, 
2003. 

[6] P. Sebos, J. Yates, G. Hjalmtysson, and A. 
Greenberg, “Auto-discovery of shared risk link 
groups,” in  Fiber Communication Conference, 
2001 OSA Technical Digest Series ( Society of 
America, 2001), paper WDD3. 

[7] S. Yuan and J. P. Jue, “Dynamic path protection 
in WDM mesh networks under risk disjoint 
constraint,” Proceedings of IEEE Globecom 2004, 
Dallas, TX, November 2004, pp. 1770–1774. 

[8] S. Yuan, S. Varma and J. P. Jue, “Path Routing 
for Maximum Reliability in  Mesh 
Networks,” Journal of  Networking (OSA), Vol. 7, 
No. 5, May 2008, pp. 449-466. 

[9] S. Yuan, S. Varma and J. P. Jue, “Minimum 
Color Problem for Reliability in Mesh 
Networks,” Proceedings, IEEE INFOCOM 2005, 
Vol. 4, Miami, FL, March 2005, pp. 2658- 2669. 

[10] C. Huang, M. Li and A. Srinivasan, “A Scalable 
Path Protection Mechanism for Guaranteed 
Network Reliability under Multiple Failures”, 
IEEE Transactions on Reliability, Vol.56, Issue 2, 
June 2007, pp. 254-267. 

[11] L. Guo, “Heuristic Survivable Routing Algorithm 
for Multiple Failures in WDM Networks,”  
2nd IEEE/IFIP International Workshop on 
Broadband Convergence Networks, BcN '07, 
Munich, Germany, May 2007. 

[12] S. Yuan and J. P. Jue, “Shared protection routing 
algorithm for  network,”  Networks Magazine, 
Vol. 3(3), 2002, pp. 32–39. 

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, 
Introduction to Algorithms, 2nd ed., McGraw Hill, 
2001. 

[14] Algorithmic Solutions Software GmbH, 
http://www.algorithmic-
solutions.com/leda/index.htm 

0.90

0.91

0.92

0.93

0.94

0.95

2 4 6 8 10

OA-2
HA-1

Number of SRLGs

A
verage R

eliability 


