
 

Reliable lightpath routing in optical mesh networks under multiple link failures1

Shengli Yuan 
Department of Computer and Mathematical Sciences 

University of Houston – Downtown 
One Main St, Houston, Texas 77002, USA 

Email: yuans@uhd.edu 
 
 

Abstract - In this work, we study the problem of maximizing 
lightpath reliability in optical mesh networks against 
simultaneous failures of multiple fiber links without using 
protection schemes. The fiber links belong to shared risk link 
groups (SRLGs) that have arbitrary failure probabilities. This 
problem is NP-hard and we propose heuristic algorithms for 
networks with large numbers of SRLGs as well as optimal 
solutions for networks with smaller numbers of SRLGs. The 
solutions are evaluated through simulations. 

Keywords – lightpath reliability; multiple failures; Shared 
Risk Link Group (SRLG) 

I. INTRODUCTION 

A lightpath in wavelength-division-multiplexing (WDM) 
networks offers data rate up to 40 Gbits/s or even 
100Gbits/s, which makes it an ideal transmission medium 
for the next generation transport networks [1][2][3][4]. With 
such high data rates, a failure of a lightpath can potentially 
cause significant service disruption to the customers. 
Therefore it is among the top priorities of network operators 
to ensure lightpath reliability. 

A common approach to achieve high reliability is 
through lightpath protection in which a link-disjoint 
protection lightpath is pre-computed and reserved for each 
working lightpath [5][6]. Such schemes provide 100% 
reliability against single-link failures. However, various risk 
factors such as natural and man-caused catastrophes 
introduce the possibility that when a network failure occurs,  
multiple fiber links that belong to the same shared risk link 
group (SRLG) fail simultaneously [7][8][9][10]. In this case, 
only a working and a protection lightpath that are SRLG-
disjoint can survive the failure [11]. However, the study in 
[12] proved it NP-hard to find SRLG-disjoint working and 
protection lightpaths. Consequently, attempts were made to 
minimize the probability of simultaneous failures of the pair. 
Yuan et al. proved this problem also NP-hard and proposed 
heuristic algorithms for the special cases in which all 
SRLGs have equal failure probabilities [13][14]. Various 
heuristic solutions were also proposed for the general case 
in which the SRLGs have different failure probabilities 
[15][16][17]. 1 

1 An earlier version of portions of the paper was presented 
in the Internationals Conference on Computational and 
Information Science, April 30 – May 2, 2009, Houston, TX 

In addition to the difficulties of finding the maximum 
reliable working and protection lightpaths, another 
limitation of the protection schemes is that they require the 
reservation of a significant amount of network resources. 
Shared path protection may be used to improve resource 
utilization at the expense of signaling and network 
management [17][18]. Therefore for certain types of traffic 
and customers, it may be more resource-efficient and cost-
effective to use a single lightpath without protection, if the 
reliability of the lightpath can be maximized.  

As later shown in Section II, for networks with only 
single failures, finding the maximum reliable lightpath 
without protection is equivalent to a minimum-cost-path 
problem and can be easily solved.  However, simultaneous 
multiple failures complicate the matter and make the task 
NP-hard [13][14]. The work in [13][14] proposed heuristic 
solutions for the special cases in which all SRLGs have 
equal failure probabilities. In this paper, we study the 
maximum reliable lightpath problem for the general case in 
which the SRLGs have arbitrary failure probabilities. We 
develop both heuristic and optimal solutions. A search of 
recent literatures has indicated this work is the first to study 
the general problem without using protection schemes. 

The remainder of the paper is organized as follows. In 
Section II, we describe the maximum reliable lightpath 
problem. In Section III, we propose optimal solutions for 
networks with small number of SRLGs. We also propose 
heuristic solutions for networks with large number of 
SRLGs.  The algorithms are evaluated through computer 
simulations in Section IV. We conclude the paper in Section 
V. 

II. PROBLEM DESCRIPTION 

The problem is defined as follows. Given network G = 
(N, L, S, Ps ) where N is the set of nodes, L is the set of fiber 
links (assume they are bidirectional), and S is the set of 
SRLGs in the network, Ps = {p1, p2, p3, …, pi, …} is the set 
of non-failure probabilities of each SRLG si S and 0 < pi < 
1, also given Sl  l L and Sl S is the set of SRLGs to 
which link l belongs, find one lightpath P from source node 
s to destination node d such that P has the maximum 
reliability. 

The reliability of a lightpath is defined as follows. Let SP 
be the set of all SRLGs to which the links of a lightpath P 
belong. Then the reliability of P is 
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rP = 
PP

i Ss

pi ,  pi  Ps  and pi is the non-failure  

probability of SRLG P
is                      (1) 

In this study, we focus on fiber link failures and not 
node failures for the following reasons. First of all, nodal 
devices in modern transport networks often have built-in 
redundancies and are located in well-controlled facilities, 
which make them very reliable; and secondly, the failure of 
a node can be equaled to the simultaneous failures of all the 
links ending with that node [19]. 

A single SRLG may contain multiple fiber links while a 
fiber link may belong to multiple SRLGs. However, we can 
transform a link belonging to multiple SRLGs into multiple 
links each belonging to a single SRLG without altering the 
reliabilities of the lightpaths in the network. This is 
explained as follows.  

 
 
 
 
 

 

a. Link l between nodes n1 and n2 belonging to multiple SRLGs: ls1 ,
ls2 , … , l

is ,… 

 
 
 
 

 
b. Multiple concatenating links each belonging to a single SRLGs: l1 to

ls1 , l2 to ls2 , … , li to l
is ,… 

Figure 1. Transforming a fiber link that belongs to multiple SRLGs into 
multiple links each belonging to a single SRLG. 

 
Let the set of SRLGs to which l belongs be Sl = { ls1 , ls2 , 

… , l
is ,… } and |Sl | > 1. The non-failure probability of l is  

rl = 
ll

i Ss

pi ,  pi  Ps , and pi is the non-failure  

probability of SRLG l
is          (2) 

Now replace l with |Sl| concatenating links l1, l2, …, li, 
… , each belongs to a unique SRLG ls1 , ls2 , … , l

is ,… from 
Sl, as shown in Fig. 1. The reliability of li is the non-failure 
probability of l

is , i.e., pi . Thus the reliability of the 
combined links l1, l2, …, li, … is p1×p2× …×pi×…, which is 
the same as rl. Also because there is no other links 
branching off from these links, a lightpath going through 
one of the links must also go through all of them. Therefore 
their effects on the reliabilities of lightpaths are the same as 
that of l. Consequently, without the loss of generality, we 

assume for the remainder of the paper, all fiber links each 
belongs to a single SRLG, i.e., | Sl | = 1  l L. 

III. ANALYSIS AND SOLUTIONS 

In the special case in which every fiber link belongs to a 
unique SRLG, the maximum reliable lightpath can be 
readily obtained using the following algorithm: 

Algorithm (A-1) 

Step 1: 
 
 
 
 

for (every link li L) { 
     set its link cost to 
          ci = |log pi | where pi is the non-failure     
          probability of SRLG l

is to which li  
          belongs; 
} 

Step 2: 
 
Step 3: 

run Dijkstra’s algorithm for a minimum-cost 
path between node s and d; [20] 
if (Step 2 succeeds) 
     return the path obtained in Step 2; 

This algorithm’s running time is the time of computing 
the cost of every link plus the minimum-cost-path 
algorithm, i.e., O(|L|+|N|log|N|) [20]. Its correctness can be 
proven as follows. 

Proof:  Let P be a lightpath connection node s and d. Let 
the collection of links of P be LP = { Pl1 , Pl2 , …, P

il , …}. 

From Step 1, the link cost ci of link P
il is |log pi| where pi is 

the non-failure probability of the SRLG l
is to which P

il
belongs, and 0 < pi < 1 . 

Thus the total cost of lightpath P is  

cP = 
PP

i Ll

ci  = 
PP

i Ll

|log pi|  =  |log(
PP

i Ll

pi)|  

  =  log (
PP

i Ll

pi)-1,  and 1 < (
PP

i Ll

pi) -1 < +  

Hence,
PP

i Ll

pi  is maximized when cP is minimized.  

Since every link belongs to a unique SRLG, the 
reliability of P is rP = 

PP
i Ll

pi , 0 < rP < 1. Thus when cP is 

minimized, rP is maximized.  
This problem becomes NP-hard if each SRLG contains 

multiple fiber links that may fail simultaneously [13][14]. 
However, for networks in which the number of SRLGs is 
small, we propose two optimal solutions whose running 
times are polynomial to the number of network nodes and 
are exponential only to the number of SRLGs. For networks 
with arbitrarily large number of SRLGs, we propose two 
heuristic solutions whose running times are polynomial to 
both the number of network nodes and that of SRLGs.  

For both of the optimal algorithms, we need to generate 

n2 n1 
l 

{ ls1 , ls2 , … , l
is ,…} 

l1 

{ ls2 } n2 
l2 li 

n1 { ls1 } { l
is }
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all the subsets from a set of SRLGs. This is equivalent to the 
problem of generating combinations, which has been 
extensively studied [21][22]. Thus we omit the detail of the 
procedure. The first optimal solution (i.e., OA-1) is 
described as follows: 

Algorithm (OA-1) 

Step 1: same as Step 1 of (A-1); 
Step 2: generate all non-empty subsets of S and store 

them in array SUB[]; 
for (every subset Sx in SUB[]) { 
      compute rx = 

x
i Ss

pi , where pi is the non- 

      failure probability of SRLG si ; 
} 
sort SUB[] in the descending order of the rx 
values of each subset Sx in SUB[]; 

Step 3: 
 
line*: 

for (each subset Sx in SUB[], starting from 
SUB[0]) { 
     remove all links in G whose SRLGs Sx;  
     run Dijkstra’s Algorithm for a minimum-cost 
     path Px between s and d; 
     restore the links that were removed in line*; 
     if (succeed in obtaining Px) { 
          return Px and quit; 
     } 
} 
output “No path exist” and quit; 

The total number of non-empty subsets generated in 
Step 2 is 2|S|-1. Thus the running time of Step 2 is O((2|S|-
1)log(2|S|-1)) = O(|S|2|S|). The running time of Step 3 is 
O(2|S||N|log|N|). Thus the total running time of (OA-1) is 

RT1 =  O(2|S|(|S|+|N|log|N|))             (3) 

This running time is polynomial to the number of 
network nodes |N| and is exponential only to |S|, i.e., the 
number of SRLGs. Therefore (OA-1) is a viable solution for 
networks in which the value of |S| is small.  

Proof of correctness: 
If a path does not exist between s and d, Step 3 cannot 

generate a path from any of the subnetworks of G which it 
iterates through. Thus (OA-1) correctly produces no 
lightpath. 

If there does exist an optimal path P0 from s to d with 
the maximum reliability Pr0 and non-empty SRLG set PS0 . We 
need to prove (OA-1) produces a lightpath of reliability Pr0 . 

Because SUB[] has all non-empty subsets of S including 
PS0 , sorted by their rx values in descending order, Step 3 

cannot terminate in an iteration with a subset Sx and an rx 
value that is greater than Pr0 , otherwise it would indicate 
that there exists a path P1 from s to d in the subnetwork that 
has all the SRLGs in Sx. From (1), P1 would have reliability 

no less than rx thus greater than Pr0 . 
If P0 does exist, Step 3 cannot go through all iterations 

without generating a path, nor terminate in an iteration on a 
subset P

iS with P
ir < Pr0 . This is because for every SRLG 

subset P
iS with P

ir < Pr0 , the index of P
iS in SUB[] must be 

greater than that of PS0 . If Step 3 were to reach an iteration 
on P

iS , it must have executed an earlier iteration on PS0  in 
which the algorithm should have already terminated because 
of the existence of P0 between s to d. 

Therefore, this algorithm can only terminate in an 
iteration on an SRLG subset Sx with rx = Pr0 , which generates 
a maximum reliable lightpath, if such lightpath does exist.  

To improve upon (OA-1), we note that all lightpaths 
connecting s and d must go through fiber links that end with 
s and d. Let Ss be the set of SRLGs to which the links 
ending with s belong. Let Sd be the set of SRLGs to which 
the links ending with d belong. Ss and Sd may contain 
common SRLGs. If a lightpath does not consist of fiber 
links that belong to SRLGs in Ss and Sd, the lightpath cannot 
connect s and d. Thus we can exclude these lightpaths from 
consideration. Hereby we propose the second optimal 
solution (OA-2) with details as follows. 

Algorithm (OA-2) 

Step 1: same as Step 1 of (A-1); 
Step 2: r’ = 0; 

P’ = null; 
Step 3: 
Step 3.1: 
 
line†: 
 
 
 
 
 
 
 
 
 
 
 
 
 

line‡: 

for (every subset Sx in S - Ss - Sd) { 
     for (every non-empty subset Sy in Ss Sd) { 

for  (every subset Sz in Ss-Ss Sd) { 
remove all links whose SRLGs  
(Sx Sy Sz); 
run Dijkstra’s Algorithm for a 
minimum-cost path Pxyz between s and 
d; 
restore the links that were removed in 
line†; 
if (succeed in obtaining Pxyz ) { 
     compute the reliability of the path 

     
P

xyzr using (1); 

     if ( P
xyzr > r’) { 

          r’ = P
xyzr ; 

          P’ = Pxyz ; 
     }

 } 
 } 

     } 
Step 3.2: 
 
 

    for (every non-empty subset Sy in Sd- Ss Sd){ 
for (every non-empty subset Sz in Ss) {  

             same as the lines between line† and  
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             line‡; 
         } 

} 
} 

Step 4: return P’; 

Proof of correctness: 
All SRLGs in G can be grouped into four non-

overlapping sets: Ss- Ss Sd, Sd-Ss Sd, Ss Sd and S-Ss-Sd. 
Let P0 be the optimal lightpath from s to d with the 
maximum reliability Pr0 and SRLG set S0. Since S0 must 
contain SRLG(s) in Ss and Sd, one of following three 
conditions must be true:  

a. S0 contains a subset of S-Ss-Sd, a non-empty subset of 
Ss Sd, a subset Ss-Ss Sd and nothing in Sd-Ss Sd; 

b. S0 contains a subset of S-Ss-Sd, a non-empty subset of 
Sd-Ss Sd, a non-empty subset of Ss Sd and nothing in Ss-Ss

Sd; 
c. S0 contains a subset of S-Ss-Sd, a non-empty subset of 

Sd-Ss Sd, a subset of Ss Sd and a non-empty subset of Ss-
Ss Sd; 

Since Ss = (Ss- Ss Sd)  (Ss Sd), condition b and c can 
be combined into: 

d. S0 contains a subset of S-Ss-Sd, a non-empty subset of 
Sd-Ss Sd, a non-empty subset of Ss; 

Step 3.1 looks for lightpaths satisfying condition a; Step 
3.2 does so for condition d. As long as there exists a 
maximum reliable lightpath, the lightpath must be reached 
in at least one of the two steps following the same proof for 
(A-2).  

The total number of iterations in Step 3.1 is  

     I3.1 = ||2
ds SSS ×( ||2

ds SS -1)× ||2
dss SSS   

     = 
||||2

dss SSSS - ||2
dSS  

The total number of iterations of Step 3.2 is 

     I3.2 = ||2
ds SSS ×( ||2

dsd SSS -1)×( ||2
sS -1) 

  = 
||2 S - ||||2

dss SSSS   - ||2
sSS + ||2

ds SSS
 

Thus the total running time of this algorithm is 

RT2 = O(( ||2 S - ||2
sSS - ||2

dSS + ||2
ds SSS )|N|log|N|)      (4) 

This is expected for excluding the lightpaths that do not 
contain fiber links belonging to SRLGs Ss and Sd. Compared 
to the running time of (OA-1) given in (3), the running time 
of (OA-2) is clearly smaller. In the special case in which |Ss| 
= |S|/2, |Sd| = |S|/2 and |Ss Sd| = 0,  

RT2 = O(( ||2 S - 2/||2 S - 2/||2 S )|N|log|N|) 
       = O(( ||2 S - 2/||12 S )|N|log|N|) 

The running times of both (OA-1) and (OA-2) are 
polynomial to the number of network nodes and exponential 
only to the number of SRLGs, making the algorithms suited 

for networks that have small numbers of SRLGs (e.g., 20 or 
less). For networks with arbitrarily large numbers of 
SRLGs, we propose the following two heuristic solutions. 

The first heuristic solution (HA-1) is a modified 
Dijkstra’s Algorithm. In this algorithm, during the process 
of generating the preferred lightpath P from node s to d, let 
SP be the set of SRLGs to which the known portion of P 
belongs, if the SRLG l

is of a fiber link li is already in SP, we 
consider li’s link cost to be zero because adding li to P does 
not decrease P’s reliability. In this way, new links may be 
added to P without introducing new SRLG to SP and 
lowering its reliabilities. The details are as follows. 

Algorithm (HA-1) 

Step 1: same as Step 1 of (A-1); 
Step 2: initialize set ND to contain all nodes except s; 
Step 3: initialize array CT[] so that CT[v] is the cost of 

the link from the source to v if v is adjacent to s, 
and INFINITY otherwise; 

Step 4: initialize entries of array PR[] so that PR[v] is 
assigned s if v is adjacent to s; NULL otherwise; 

Step 5: initialize array S[] so that S[v] contains the set 
of SRLGs to which the preferred path from s to v 
belongs to. Initially S[v] is   v N; 

Step 6: while (ND  ) { 
     choose a node u from ND such that CT[u] is 
     minimum; 
     if (CT[u] is INFINITY) 
          output “no path exists” and quit; 
     delete u from ND; 
     S[u]=S[PR[u]] {SRLG of link <PR[u], 
     u>}; 
     if (u is d) { 
          generate the preferred path from PR[] as 
          s - … - PR[PR[u]] - PR[u] - u; 
          quit; 
     } 
     for (each node v that is adjacent to u)  { 
          if (v ND) { 
               if (the SRLG of link <u, v>  S[u]) 
                    c = CT[u]; 
               else 
                    c = CT[u] + cost of link <u, v>; 
               if (c < CT[v]) { 
                    PR[v] = u; 
                    CT[v] = c; 
               } 
          } 
     } 
} 

 
This algorithm has the same running time as Dijkstra’s 

algorithm which is O(|N|log|N|).  
The next heuristic (HA-2) is an improvement over (HA-
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1). The details are as follows: 

Algorithm (HA-2) 

Step 1: run (HA-1) to find a preferred lightpath P 
between s and d;  
if (failed)  quit; 
compute P’s reliability rP using (1); 
r’ = rP; 
P’ = P; 
S’ = S; 

Step 2: s’ = null; 
for (every SRLG si S’) { 
     set cost to zero on all links that belong to si ; 
     run (HA-1) to find a new path Pi ; 
     if (succeeds) { 
         compute reliability P

ir  using (1); 

         if ( P
ir >r’) { 

              r’ = P
ir ; 

              P’ = Pi ; 
              s’ = si ; 
         } 
    } 
    restore the link cost that were set to zero; 
} 
set link cost to zero on all links that belong to 
s’ ; 

Step 3: while (s’  null) { 
     S’ = S - s’ ; 
     repeat Step 2; 
} 
return P’ and r’ ; 

Step 1 repeats (HA-1). It generates a lightpath which we 
use as the lower bound to generate more reliable lightpaths 
in the next two steps. In Step 2, we select one SRLG at a 
time from all SRLGs in the network, set the link cost to zero 
on all links that belongs to that particular SRLG, and 
generate a new lightpath between s and d. The intent is to 
determine whether we can increase the lightpath reliability 
if we make the links belonging to one SRLG more attractive 
than others by setting their cost to zero. After going through 
all the SRLGs, we may identify an SRLG which leads to the 
highest reliability of a lightpath. We then set the cost of all 
the links of that SRLG to zero before going to Step 3. The 
running time of this step is O(|S||N|log|N|). Step 3 repeats the 
previous step until no new lightpath can be found with 
greater reliability. The maximum number of iterations in 
this step is |S|, which results in a total running time of O(|S|2 

|N|log|N|) for the entire algorithm. 
The performances of the algorithms are evaluated by 

computer simulations in the next section. 

IV. SIMULATIONS 

We use LEDA programs to randomly generate network 
graphs for the simulations [23]. The network size ranges 
from 10 to 40 nodes. The average nodal degree (i.e., the 
number of links ending in a node) ranges from 2.6 to 3.0. 
The number of SRLGs in each network ranges from 2 to 10. 
The non-failure probabilities of the SRLGs are uniformly 
distributed in the range from 0.9000 to 0.9999. Each fiber 
link is assumed to support an unlimited number of 
lightpaths and is assumed to belong to any SRLG with equal 
probability.  

According to the proofs of Section III, (OA-1) and (OA-
2) both generate optimal solutions, thus only (OA-1) was 
executed to provide performance upper bound for the two 
heuristic solutions (HA-1) and (HA-2). For all pairs of end 
nodes, we ran (OA-1), (HA-1) and (HA-2) to obtain the 
maximum reliable lightpaths. We then compared the 
average reliabilities of the lightpaths. Two sets of the results 
are depicted in Fig. 2 and Fig. 3. Results from other network 
topologies are similar. 

We observe that the amount of time for the algorithms to 
generate the maximum reliable lightpaths is very small. For 
instance, to generate 780 lightpaths between every pair of 
nodes in a 40-node network with 3.0 nodal degree and 10 
SRLGs, it takes less than a second when running the 
heuristic solutions (HA-1) and (HA-2) on a personal 
computer with a dual-core Intel processor. Even when 
running the optimal solution (OA-1), we still get all the 
paths in less than 30 seconds, i.e., less than 50 milliseconds 
per lightpath on average. According to (4), (OA-2) should 
execute even faster than (OA-1). 

The simulations demonstrate that the performances of 
the two heuristic solutions are very close to that of the 
optimal solution. Heuristic solution (HA-2) in particular, 
generates lightpaths with reliabilities that are 
indistinguishable from those of the optimal lightpaths 
obtained from (OA-1). 

We note that the number of SRLGs and their non-failure 
probabilities have a significant impact on the average 
reliabilities of the lightpaths. The reliabilities improve along 
with the increase of the average non-failure probabilities of 
the SRLGs. In addition, when the number of SRLGs is 
small, a lightpath is more likely to consist of fiber links that 
belong to fewer SRLGs. Consequently, from (1), the 
lightpath has higher reliability if the non-failure 
probabilities of the SRLGs do not vary significantly. As the 
number of SRLGs increases, the fiber links of a lightpath 
are more likely to belong to a bigger variety of SRLGs, 
which reduces the reliabilities of the lightpaths. 

We also note that, as the nodal degree increases, the 
average reliabilities of the lightpaths increase. The reason 
for this behavior is that an increase in nodal degree results in 
higher average number of fiber links belonging to each 
SRLG, thereby making a lightpath more likely to consist of 
fiber links that belong to fewer SRLGs. 
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a. Nodal degree = 2.6 

 

b. Nodal degree = 3.0 

Figure 2. Average Lightpath Reliability vs. Number of SRLGs. 
Number of nodes = 20 

a. Nodal degree = 2.6 

 

b. Nodal degree = 3.0 

Figure 3. Average Lightpath Reliability vs. Number of SRLGs. 
Number of nodes = 40. 

 
The network topology and the size of the network also 

affect the reliabilities of the lightpath. Larger networks with 
more nodes result in a higher average hop count for 
lightpaths; hence, for the same nodal degree and the number 
of SRLGs, the fiber links of the lightpaths in a network with 
more nodes will belongs to a greater number of SRLGs than 
lightpaths in a network with fewer nodes, which reduces the 
reliabilities of the lightpaths in a larger network. 

V. CONCLUSIONS 

In this paper we discussed the problem of finding the 
maximum reliable lightpath between two nodes under 
multiple failures. For arbitrarily large networks that contain 
a small number of SRLGs, we proposed two optimal 
solutions with running times that are polynomial to the 
network size and exponential to the number of SRLGs. For 
networks that contain a large number of SRLGs, we 
proposed two heuristic solutions with running times that are 
polynomial to both the network size and the number of 
SRLGs. Despite the simplicity of the heuristics, computer 
simulations demonstrated that the heuristics yield solutions 
that are close to optimal. 

From the simulations, we also observed that various 
factors affect the reliabilities of the lightpaths, including the 
nodal degree, the number of SRLGs, the non-failure 
probabilities of individual SRLGs, and the number of nodes 
in the network. An increase in the nodal degree helps 
increase the reliabilities of the lightpaths. This is due to the 
fact that there is a greater choice of routes for the lightpaths. 
The number of SRLGs also affects the reliabilities of the 
lightpaths. If the non-failure probabilities of the SRLGs are 
close to each other, an increase in the number of SRLGs 
reduces the reliabilities of the lightpaths. Larger number of 
network nodes also reduces the reliabilities of the lightpaths 

0.89

0.90

0.91

0.92

0.93

0.94

0.95

2 3 4 5 6 7 8 9 10

OA-1

HA-1

HA-2

0.89

0.90

0.91

0.92

0.93

0.94

0.95

2 4 6 8 10

OA-1

HA-1

HA-2

0.89

0.90

0.91

0.92

0.93

0.94

0.95

2 4 6 8 10

OA-1

HA-1

HA-2

0.89

0.90

0.91

0.92

0.93

0.94

0.95

2 4 6 8 10

OA-1

HA-1

HA-2

Number of SRLGs 

A
verage R

eliability 
A

verage R
eliability

Number of SRLGs 

Number of SRLGs 

A
verage R

eliability

Number of SRLGs 

A
verage R

eliability 

119119119119

Authorized licensed use limited to: University of Houston Downtown. Downloaded on October 2, 2009 at 13:17 from IEEE Xplore.  Restrictions apply. 



 

since the lightpaths are now longer and hence are more 
likely to contain more SRLGs. 
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